
Elementary Linear Algebra

Kuttler

January 10, 2012

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



2

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation

Elementary Linear Algebra was written by Dr. Kenneth Kuttler of Brigham Young University for teaching 

Linear Algebra I. After The Saylor Foundation accepted his submission to Wave I of the Open Textbook 

Challenge, this textbook was relicensed as CC-BY 3.0. 

Information on The Saylor Foundation’s Open Textbook Challenge can be found at www.saylor.org/otc/.

Elementary Linear Algebra © January 10, 2012 by Kenneth Kuttler, is licensed under a Creative Commons 

Attribution (CC BY) license made possible by funding from The Saylor Foundation's Open Textbook 

Challenge in order to be incorporated into Saylor.org's collection of open courses available at: http://

www.saylor.org" Full license terms may be viewed at: http://creativecommons.org/licenses/by/3.0/legalcode



Contents

1 Some Prerequisite Topics 11

1.1 Sets And Set Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Graphs Of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 The Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Polar Form Of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Roots Of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 The Quadratic Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Fn 23

2.1 Algebra in Fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Geometric Meaning Of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Geometric Meaning Of Vector Addition . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Distance Between Points In Rn Length Of A Vector . . . . . . . . . . . . . . . . . . 27
2.5 Geometric Meaning Of Scalar Multiplication . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Vectors And Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Vector Products 39

3.1 The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 The Geometric Significance Of The Dot Product . . . . . . . . . . . . . . . . . . . . 41

3.2.1 The Angle Between Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Work And Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 The Inner Product And Distance In Cn . . . . . . . . . . . . . . . . . . . . . 45

3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 The Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 The Distributive Law For The Cross Product . . . . . . . . . . . . . . . . . . 51
3.4.2 The Box Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.3 A Proof Of The Distributive Law . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 The Vector Identity Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Systems Of Equations 59

4.1 Systems Of Equations, Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Systems Of Equations, Algebraic Procedures . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Elementary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Gauss Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



4 CONTENTS

5 Matrices 77

5.1 Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.1 Addition And Scalar Multiplication Of Matrices . . . . . . . . . . . . . . . . 77
5.1.2 Multiplication Of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.3 The ijth Entry Of A Product . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.4 Properties Of Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.5 The Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.6 The Identity And Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.7 Finding The Inverse Of A Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Determinants 99

6.1 Basic Techniques And Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.1 Cofactors And 2× 2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.2 The Determinant Of A Triangular Matrix . . . . . . . . . . . . . . . . . . . . 102
6.1.3 Properties Of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.4 Finding Determinants Using Row Operations . . . . . . . . . . . . . . . . . . 104

6.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.1 A Formula For The Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 The Mathematical Theory Of Determinants∗ 119

7.1 The Function sgnn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 The Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.2 Permuting Rows Or Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.3 A Symmetric Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.4 The Alternating Property Of The Determinant . . . . . . . . . . . . . . . . . 123
7.2.5 Linear Combinations And Determinants . . . . . . . . . . . . . . . . . . . . . 124
7.2.6 The Determinant Of A Product . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2.7 Cofactor Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.8 Formula For The Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.9 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.10 Upper Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 The Cayley Hamilton Theorem∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Rank Of A Matrix 131

8.1 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 THE Row Reduced Echelon Form Of A Matrix . . . . . . . . . . . . . . . . . . . . . 137
8.3 The Rank Of A Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3.1 The Definition Of Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3.2 Finding The Row And Column Space Of A Matrix . . . . . . . . . . . . . . . 142

8.4 Linear Independence And Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4.1 Linear Independence And Dependence . . . . . . . . . . . . . . . . . . . . . . 144
8.4.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.4.3 Basis Of A Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4.4 Extending An Independent Set To Form A Basis . . . . . . . . . . . . . . . . 151
8.4.5 Finding The Null Space Or Kernel Of A Matrix . . . . . . . . . . . . . . . . 152
8.4.6 Rank And Existence Of Solutions To Linear Systems . . . . . . . . . . . . . . 154

8.5 Fredholm Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.5.1 Row, Column, And Determinant Rank . . . . . . . . . . . . . . . . . . . . . . 156

8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



CONTENTS 5

9 Linear Transformations 165

9.1 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 Constructing The Matrix Of A Linear Transformation . . . . . . . . . . . . . . . . . 167

9.2.1 Rotations in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.2.2 Rotations About A Particular Vector . . . . . . . . . . . . . . . . . . . . . . . 169
9.2.3 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.2.4 Matrices Which Are One To One Or Onto . . . . . . . . . . . . . . . . . . . . 171
9.2.5 The General Solution Of A Linear System . . . . . . . . . . . . . . . . . . . . 173

9.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10 The LU Factorization 181

10.1 Definition Of An LU factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.2 Finding An LU Factorization By Inspection . . . . . . . . . . . . . . . . . . . . . . . 181
10.3 Using Multipliers To Find An LU Factorization . . . . . . . . . . . . . . . . . . . . . 182
10.4 Solving Systems Using The LU Factorization . . . . . . . . . . . . . . . . . . . . . . 183
10.5 Justification For The Multiplier Method . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.6 The PLU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.7 The QR Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

11 Linear Programming 195

11.1 Simple Geometric Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.2 The Simplex Tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
11.3 The Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

11.3.1 Maximums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.3.2 Minimums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11.4 Finding A Basic Feasible Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
11.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

12 Spectral Theory 217

12.1 Eigenvalues And Eigenvectors Of A Matrix . . . . . . . . . . . . . . . . . . . . . . . 217
12.1.1 Definition Of Eigenvectors And Eigenvalues . . . . . . . . . . . . . . . . . . . 217
12.1.2 Finding Eigenvectors And Eigenvalues . . . . . . . . . . . . . . . . . . . . . . 219
12.1.3 A Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
12.1.4 Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.1.5 Defective And Nondefective Matrices . . . . . . . . . . . . . . . . . . . . . . . 223
12.1.6 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
12.1.7 The Matrix Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
12.1.8 Complex Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

12.2 Some Applications Of Eigenvalues And Eigenvectors . . . . . . . . . . . . . . . . . . 233
12.2.1 Principle Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.2.2 Migration Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

12.3 The Estimation Of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
12.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

13 Matrices And The Inner Product 247

13.1 Symmetric And Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.1.1 Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.1.2 Symmetric And Skew Symmetric Matrices . . . . . . . . . . . . . . . . . . . 249
13.1.3 Diagonalizing A Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . 255

13.2 Fundamental Theory And Generalizations . . . . . . . . . . . . . . . . . . . . . . . . 257
13.2.1 Block Multiplication Of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 257

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



6 CONTENTS

13.2.2 Orthonormal Bases, Gram Schmidt Process . . . . . . . . . . . . . . . . . . . 260
13.2.3 Schur’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

13.3 Least Square Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
13.3.1 The Least Squares Regression Line . . . . . . . . . . . . . . . . . . . . . . . . 267
13.3.2 The Fredholm Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

13.4 The Right Polar Factorization∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
13.5 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
13.6 Approximation In The Frobenius Norm∗ . . . . . . . . . . . . . . . . . . . . . . . . . 273
13.7 Moore Penrose Inverse∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
13.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

14 Numerical Methods For Solving Linear Systems 285

14.1 Iterative Methods For Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 285
14.1.1 The Jacobi Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
14.1.2 The Gauss Seidel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

14.2 The Operator Norm∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14.3 The Condition Number∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
14.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

15 Numerical Methods For Solving The Eigenvalue Problem 299

15.1 The Power Method For Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
15.2 The Shifted Inverse Power Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

15.2.1 Complex Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
15.3 The Rayleigh Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
15.4 The QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

15.4.1 Basic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
15.4.2 The Upper Hessenberg Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

16 Vector Spaces 325

16.1 Algebraic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
16.1.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

16.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
16.2.1 Linear Independence And Bases . . . . . . . . . . . . . . . . . . . . . . . . . 327

16.3 Vector Spaces And Fields∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
16.3.1 Irreducible Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
16.3.2 Polynomials And Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.3.3 The Algebraic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
16.3.4 The Lindemann Weierstrass Theorem And Vector Spaces . . . . . . . . . . . 345

16.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
16.5 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

16.5.1 Basic Definitions And Examples . . . . . . . . . . . . . . . . . . . . . . . . . 350
16.5.2 The Cauchy Schwarz Inequality And Norms . . . . . . . . . . . . . . . . . . . 352
16.5.3 The Gram Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
16.5.4 Approximation And Least Squares . . . . . . . . . . . . . . . . . . . . . . . . 356
16.5.5 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
16.5.6 The Discreet Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 361

16.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



CONTENTS 7

17 Linear Transformations 369

17.1 Matrix Multiplication As A Linear Transformation . . . . . . . . . . . . . . . . . . . 369
17.2 L (V,W ) As A Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
17.3 Eigenvalues And Eigenvectors Of Linear Transformations . . . . . . . . . . . . . . . 370
17.4 Block Diagonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
17.5 The Matrix Of A Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 379

17.5.1 Some Geometrically Defined Linear Transformations . . . . . . . . . . . . . . 386
17.5.2 Rotations About A Given Vector . . . . . . . . . . . . . . . . . . . . . . . . . 386

17.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

A The Jordan Canonical Form* 391

B The Fundamental Theorem Of Algebra 399

C Answers To Selected Exercises 403

C.1 Exercises 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
C.2 Exercises 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
C.3 Exercises 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
C.4 Exercises 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
C.5 Exercises 72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
C.6 Exercises 92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
C.7 Exercises 111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
C.8 Exercises 158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
C.9 Exercises 175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
C.10 Exercises 190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
C.11 Exercises 214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
C.12 Exercises 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
C.13 Exercises 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
C.14 Exercises 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
C.15 Exercises 322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
C.16 Exercises 326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
C.17 Exercises 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
C.18 Exercises 363 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
C.19 Exercises 388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Copyright c⃝ 2011,

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



8 CONTENTS

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



Preface

This is an introduction to linear algebra. The main part of the book features row operations and
everything is done in terms of the row reduced echelon form and specific algorithms. At the end, the
more abstract notions of vector spaces and linear transformations on vector spaces are presented.
However, this is intended to be a first course in linear algebra for students who are sophomores
or juniors who have had a course in one variable calculus and a reasonable background in college
algebra. I have given complete proofs of all the fundamental ideas, but some topics such as Markov
matrices are not complete in this book but receive a plausible introduction. The book contains a
complete treatment of determinants and a simple proof of the Cayley Hamilton theorem although
these are optional topics. The Jordan form is presented as an appendix. I see this theorem as the
beginning of more advanced topics in linear algebra and not really part of a beginning linear algebra
course. There are extensions of many of the topics of this book in my on line book [11]. I have also
not emphasized that linear algebra can be carried out with any field although there is an optional
section on this topic, most of the book being devoted to either the real numbers or the complex
numbers. It seems to me this is a reasonable specialization for a first course in linear algebra.

Linear algebra is a wonderful interesting subject. It is a shame when it degenerates into nothing
more than a challenge to do the arithmetic correctly. It seems to me that the use of a computer
algebra system can be a great help in avoiding this sort of tedium. I don’t want to over emphasize
the use of technology, which is easy to do if you are not careful, but there are certain standard
things which are best done by the computer. Some of these include the row reduced echelon form,
PLU factorization, and QR factorization. It is much more fun to let the machine do the tedious
calculations than to suffer with them yourself. However, it is not good when the use of the computer
algebra system degenerates into simply asking it for the answer without understanding what the
oracular software is doing. With this in mind, there are a few interactive links which explain how
to use a computer algebra system to accomplish some of these more tedious standard tasks. These
are obtained by clicking on the symbol ◮. I have included how to do it using maple and scientific
notebook because these are the two systems I am familiar with and have on my computer. Other
systems could be featured as well. It is expected that people will use such computer algebra systems
to do the exercises in this book whenever it would be helpful to do so, rather than wasting huge
amounts of time doing computations by hand. However, this is not a book on numerical analysis so
no effort is made to consider many important numerical analysis issues.

9
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Some Prerequisite Topics

The reader should be familiar with most of the topics in this chapter. However, it is often the case
that set notation is not familiar and so a short discussion of this is included first. Complex numbers
are then considered in somewhat more detail. Many of the applications of linear algebra require the
use of complex numbers, so this is the reason for this introduction.

1.1 Sets And Set Notation

A set is just a collection of things called elements. Often these are also referred to as points in
calculus. For example {1, 2, 3, 8} would be a set consisting of the elements 1,2,3, and 8. To indicate
that 3 is an element of {1, 2, 3, 8} , it is customary to write 3 ∈ {1, 2, 3, 8} . 9 /∈ {1, 2, 3, 8} means 9 is
not an element of {1, 2, 3, 8} . Sometimes a rule specifies a set. For example you could specify a set
as all integers larger than 2. This would be written as S = {x ∈ Z : x > 2} . This notation says: the
set of all integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then A is a subset
of B. For example, {1, 2, 3, 8} is a subset of {1, 2, 3, 4, 5, 8} , in symbols, {1, 2, 3, 8} ⊆ {1, 2, 3, 4, 5, 8} .
It is sometimes said that “A is contained in B” or even “B contains A”. The same statement about
the two sets may also be written as {1, 2, 3, 4, 5, 8} ⊇ {1, 2, 3, 8}.

The union of two sets is the set consisting of everything which is an element of at least one of
the sets, A or B. As an example of the union of two sets {1, 2, 3, 8} ∪ {3, 4, 7, 8} = {1, 2, 3, 4, 7, 8}
because these numbers are those which are in at least one of the two sets. In general

A ∪B ≡ {x : x ∈ A or x ∈ B} .

Be sure you understand that something which is in both A and B is in the union. It is not an
exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets. Thus
{1, 2, 3, 8}∩{3, 4, 7, 8} = {3, 8} because 3 and 8 are those elements the two sets have in common. In
general,

A ∩B ≡ {x : x ∈ A and x ∈ B} .
The symbol [a, b] where a and b are real numbers, denotes the set of real numbers x, such that

a ≤ x ≤ b and [a, b) denotes the set of real numbers such that a ≤ x < b. (a, b) consists of the set of
real numbers x such that a < x < b and (a, b] indicates the set of numbers x such that a < x ≤ b.
[a,∞) means the set of all numbers x such that x ≥ a and (−∞, a] means the set of all real numbers
which are less than or equal to a. These sorts of sets of real numbers are called intervals. The two
points a and b are called endpoints of the interval. Other intervals such as (−∞, b) are defined by
analogy to what was just explained. In general, the curved parenthesis indicates the end point it
sits next to is not included while the square parenthesis indicates this end point is included. The
reason that there will always be a curved parenthesis next to ∞ or −∞ is that these are not real
numbers. Therefore, they cannot be included in any set of real numbers.

11
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A special set which needs to be given a name is the empty set also called the null set, denoted
by ∅. Thus ∅ is defined as the set which has no elements in it. Mathematicians like to say the empty
set is a subset of every set. The reason they say this is that if it were not so, there would have to
exist a set A, such that ∅ has something in it which is not in A. However, ∅ has nothing in it and so
the least intellectual discomfort is achieved by saying ∅ ⊆ A.

If A and B are two sets, A \B denotes the set of things which are in A but not in B. Thus

A \B ≡ {x ∈ A : x /∈ B} .

Set notation is used whenever convenient.
To illustrate the use of this notation relative to intervals consider three examples of inequalities.

Their solutions will be written in the notation just described.

Example 1.1.1 Solve the inequality 2x+ 4 ≤ x− 8

x ≤ −12 is the answer. This is written in terms of an interval as (−∞,−12].

Example 1.1.2 Solve the inequality (x+ 1) (2x− 3) ≥ 0.

The solution is x ≤ −1 or x ≥ 3

2
. In terms of set notation this is denoted by (−∞,−1]∪ [

3

2
,∞).

Example 1.1.3 Solve the inequality x (x+ 2) ≥ −4.

This is true for any value of x. It is written as R or (−∞,∞) .

1.2 Functions

The concept of a function is that of something which gives a unique output for a given input.

Definition 1.2.1 Consider two sets, D and R along with a rule which assigns a unique element
of R to every element of D. This rule is called a function and it is denoted by a letter such as f.
Given x ∈ D, f (x) is the name of the thing in R which results from doing f to x. Then D is called
the domain of f. In order to specify that D pertains to f , the notation D (f) may be used. The
set R is sometimes called the range of f. These days it is referred to as the codomain. The set of
all elements of R which are of the form f (x) for some x ∈ D is therefore, a subset of R. This is
sometimes referred to as the image of f . When this set equals R, the function f is said to be onto,
also surjective. If whenever x ̸= y it follows f (x) ̸= f (y), the function is called one to one.

, also injective It is common notation to write f : D 7→ R to denote the situation just described
in this definition where f is a function defined on a domain D which has values in a codomain R.

Sometimes you may also see something like D
f7→ R to denote the same thing.

Example 1.2.2 Let D consist of the set of people who have lived on the earth except for Adam and
for d ∈ D, let f (d) ≡ the biological father of d. Then f is a function.

This function is not the sort of thing studied in calculus but it is a function just the same.

Example 1.2.3 Consider the list of numbers {1, 2, 3, 4, 5, 6, 7} ≡ D. Define a function which assigns
an element of D to R ≡ {2, 3, 4, 5, 6, 7, 8} by f (x) ≡ x+ 1 for each x ∈ D.

This function is onto because every element of R is the result of doing f to something in D. The
function is also one to one. This is because if x + 1 = y + 1, then it follows x = y. Thus different
elements of D must go to different elements of R.

In this example there was a clearly defined procedure which determined the function. However,
sometimes there is no discernible procedure which yields a particular function.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation
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Example 1.2.4 Consider the ordered pairs, (1, 2) , (2,−2) , (8, 3) , (7, 6) and let

D ≡ {1, 2, 8, 7} ,

the set of first entries in the given set of ordered pairs and let

R ≡ {2,−2, 3, 6} ,

the set of second entries, and let f (1) = 2, f (2) = −2, f (8) = 3, and f (7) = 6.

This specifies a function even though it does not come from a convenient formula.

1.3 Graphs Of Functions

Recall the notion of the Cartesian coordinate system you probably saw earlier. It involved an x axis,
a y axis, two lines which intersect each other at right angles and one identifies a point by specifying a
pair of numbers. For example, the number (2, 3) involves going 2 units to the right on the x axis and
then 3 units directly up on a line perpendicular to the x axis. For example, consider the following
picture.

✻

✲

y

x

(2, 3)

Because of the simple correspondence between points in the plane and the coordinates of a point
in the plane, it is often the case that people are a little sloppy in referring to these things. Thus, it
is common to see (x, y) referred to as a point in the plane. In terms of relations, if you graph the
points as just described, you will have a way of visualizing the relation.

The reader has likely encountered the notion of graphing relations of the form y = 2x + 3 or
y = x2 + 5. The meaning of such an expression in terms of defining a relation is as follows. The
relation determined by the equation y = 2x + 3 means the set of all ordered pairs (x, y) which are
related by this formula. Thus the relation can be written as

{(x, y) : y = 2x+ 3} .
The relation determined by y = x2 + 5 is

{
(x, y) : y = x2 + 5

}
.

Note that these relations are also functions. For the first, you could let f (x) = 2x+3 and this would
tell you a rule which tells what the function does to x. However, some relations are not functions.
For example, you could consider x2 + y2 = 1. Written more formally, the relation it defines is

{
(x, y) : x2 + y2 = 1

}

Now if you give a value for x, there might be two values for y which are associated with the given
value for x. In fact

y =
±
√
1− x2

Thus this relation would not be a function.
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Recall how to graph a relation. You first found lots of ordered pairs which satisfied the relation.
For example (0, 3),(1, 5), and (−1, 1) all satisfy y = 2x + 3 which describes a straight line. Then
you connected them with a curve. Here are some simple examples which you should see that you
understand. First here is the graph of y = x2 + 1.

–1

0

1

2

3

4

5

–2 –1 1 2

Now here is the graph of the relation y = 2x+ 1 which is a straight line.

–1

0

1

2

3

4

5

–2 –1 1 2

Sometimes a relation is defined using different formulas depending on the location of one of the
variables. For example, consider

y =





6 + x if x ≤ −2
x2 if −2 < x < 3

1− x if x ≥ 3

Then the graph of this relation is sketched below.

–4

–2

0

2

4

6

8

–4 –2 2 4

A very important type of relation is one of the form y−y0 = m (x− x0) , where m,x0, and y0 are
numbers. The reason this is important is that if there are two points, (x1, y1) , and (x2, y2) which
satisfy this relation, then

y1 − y2
x1 − x2

=
(y1 − y0)− (y2 − y0)

x1 − x2
=
m (x1 − x0)−m (x2 − x0)

x1 − x2

=
m (x1 − x2)

x1 − x2
= m.

Remember from high school, the slope of the line segment through two points is always the difference
in the y values divided by the difference in the x values, taken in the same order. Sometimes this is
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referred to as the rise divided by the run. This shows that there is a constant slope m, the slope of
the line, between any pair of points satisfying this relation. Such a relation is called a straight line.
Also, the point (x0, y0) satisfies the relation. This is more often called the equation of the straight
line.

Geometrically, this means the graph of the relation is a straight line because the slope between
any two points is always the same.

Example 1.3.1 Find the relation for a straight line which contains the point (1, 2) and has constant
slope equal to 3.

From the above discussion, (y − 2) = 3 (x− 1) .

Definition 1.3.2 Let f : D (f) 7→ R (f) be a function. The graph of f consists of the set

{(x, y) : y = f (x) for x ∈ D (f)} .

Note that knowledge of the graph of a function is equivalent to knowledge of the function. To
find f (x) , simply observe the ordered pair which has x as its first element and the value of y equals
f (x) .

1 2−2 −1

1

2

−2

x

y

Here is the graph of the function, f (x) = x2 − 2

x

y

1 2−2 −1

1

2

1.4 The Complex Numbers

Recall that a real number is a point on the real number line. Just as a real number should be
considered as a point on the line, a complex number is considered a point in the plane which can
be identified in the usual way using the Cartesian coordinates of the point. Thus (a, b) identifies a
point whose x coordinate is a and whose y coordinate is b. In dealing with complex numbers, such
a point is written as a+ ib. For example, in the following picture, I have graphed the point 3 + 2i.
You see it corresponds to the point in the plane whose coordinates are (3, 2) .
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3 + 2i

Multiplication and addition are defined in the most obvious way subject to the convention that
i2 = −1. Thus,

(a+ ib) + (c+ id) = (a+ c) + i (b+ d)

and

(a+ ib) (c+ id) = ac+ iad+ ibc+ i2bd

= (ac− bd) + i (bc+ ad) .

Every non zero complex number a+ ib, with a2 + b2 ̸= 0, has a unique multiplicative inverse.

1

a+ ib
=

a− ib

a2 + b2
=

a

a2 + b2
− i

b

a2 + b2
.

You should prove the following theorem.

Theorem 1.4.1 The complex numbers with multiplication and addition defined as above form a
field satisfying all the field axioms. These are the following list of properties.

1. x+ y = y + x, (commutative law for addition)

2. x+ 0 = x, (additive identity).

3. For each x ∈ R, there exists −x ∈ R such that x+ (−x) = 0, (existence of additive inverse).

4. (x+ y) + z = x+ (y + z) , (associative law for addition).

5. xy = yx, (commutative law for multiplication). You could write this as x× y = y × x.

6. (xy) z = x (yz) , (associative law for multiplication).

7. 1x = x, (multiplicative identity).

8. For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplicative inverse).

9. x (y + z) = xy + xz.(distributive law).

Something which satisfies these axioms is called a field. Linear algebra is all about fields, although
in this book, the field of most interest will be the field of complex numbers or the field of real numbers.
You have seen in earlier courses that the real numbers also satisfies the above axioms. The field
of complex numbers is denoted as C and the field of real numbers is denoted as R. An important
construction regarding complex numbers is the complex conjugate denoted by a horizontal line above
the number. It is defined as follows.

a+ ib ≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the following formula
is easy to obtain.

(
a+ ib

)
(a+ ib) = (a− ib) (a+ ib)

= a2 + b2 − i (ab− ab) = a2 + b2.
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Definition 1.4.2 Define the absolute value of a complex number as follows.

|a+ ib| ≡
√
a2 + b2.

Thus, denoting by z the complex number z = a+ ib,

|z| = (zz)
1/2

.

Also from the definition, if z = x+ iy and w = u+ iv are two complex numbers, then

|zw| = |z| |w| .

You should verify this. ◮
The triangle inequality holds for the absolute value for complex numbers just as it does for the

ordinary absolute value.

Proposition 1.4.3 Let z, w be complex numbers. Then the triangle inequality holds.

|z + w| ≤ |z|+ |w| , ||z| − |w|| ≤ |z − w| .

Proof: Let z = x+ iy and w = u+ iv. First note that

zw = (x+ iy) (u− iv) = xu+ yv + i (yu− xv)

and so |xu+ yv| ≤ |zw| = |z| |w| .

|z + w|2 = (x+ u+ i (y + v)) (x+ u− i (y + v))

= (x+ u)
2
+ (y + v)

2
= x2 + u2 + 2xu+ 2yv + y2 + v2

≤ |z|2 + |w|2 + 2 |z| |w| = (|z|+ |w|)2 ,
so this shows the first version of the triangle inequality. To get the second,

z = z − w + w, w = w − z + z

and so by the first form of the inequality

|z| ≤ |z − w|+ |w| , |w| ≤ |z − w|+ |z|

and so both |z| − |w| and |w| − |z| are no larger than |z − w| and this proves the second version
because ||z| − |w|| is one of |z| − |w| or |w| − |z|. �

With this definition, it is important to note the following. Be sure to verify this. It is not too
hard but you need to do it.

Remark 1.4.4 : Let z = a + ib and w = c + id. Then |z − w| =
√

(a− c)
2
+ (b− d)

2
. Thus the

distance between the point in the plane determined by the ordered pair (a, b) and the ordered pair
(c, d) equals |z − w| where z and w are as just described.

For example, consider the distance between (2, 5) and (1, 8) . From the distance formula this

distance equals

√
(2− 1)

2
+ (5− 8)

2
=

√
10. On the other hand, letting z = 2 + i5 and w = 1 + i8,

z − w = 1 − i3 and so (z − w) (z − w) = (1− i3) (1 + i3) = 10 so |z − w| =
√
10, the same thing

obtained with the distance formula.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation

http://www.math.byu.edu/~klkuttle/precalculus/jz62.mp4


18 SOME PREREQUISITE TOPICS

1.5 Polar Form Of Complex Numbers

Complex numbers, are often written in the so called polar form which is described next. Suppose
z = x+ iy is a complex number. Then

x+ iy =
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
.

Now note that (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

= 1

and so (
x√

x2 + y2
,

y√
x2 + y2

)

is a point on the unit circle. Therefore, there exists a unique angle θ ∈ [0, 2π) such that

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

.

The polar form of the complex number is then

r (cos θ + i sin θ)

where θ is this angle just described and r =
√
x2 + y2 ≡ |z|.

✯
θ

x+ iy = r(cos(θ) + i sin(θ))r =
√
x2 + y2 r

1.6 Roots Of Complex Numbers

A fundamental identity is the formula of De Moivre which follows.

Theorem 1.6.1 Let r > 0 be given. Then if n is a positive integer,

[r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) .

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t+ i sin t)]
n+1

= [r (cos t+ i sin t)]
n
[r (cos t+ i sin t)]

which by induction equals

= rn+1 (cosnt+ i sinnt) (cos t+ i sin t)

= rn+1 ((cosnt cos t− sinnt sin t) + i (sinnt cos t+ cosnt sin t))

= rn+1 (cos (n+ 1) t+ i sin (n+ 1) t)

by the formulas for the cosine and sine of the sum of two angles. �

Corollary 1.6.2 Let z be a non zero complex number. Then there are always exactly k kth roots of
z in C.
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Proof: Let z = x + iy and let z = |z| (cos t+ i sin t) be the polar form of the complex number.
By De Moivre’s theorem, a complex number

r (cosα+ i sinα) ,

is a kth root of z if and only if

rk (cos kα+ i sin kα) = |z| (cos t+ i sin t) .

This requires rk = |z| and so r = |z|1/k and also both cos (kα) = cos t and sin (kα) = sin t. This can
only happen if

kα = t+ 2lπ

for l an integer. Thus

α =
t+ 2lπ

k
, l ∈ Z

and so the kth roots of z are of the form

|z|1/k
(
cos

(
t+ 2lπ

k

)
+ i sin

(
t+ 2lπ

k

))
, l ∈ Z.

Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers which result
from this formula. �

Example 1.6.3 Find the three cube roots of i.

First note that i = 1
(
cos
(π
2

)
+ i sin

(π
2

))
. Using the formula in the proof of the above corollary,

the cube roots of i are

1

(
cos

(
(π/2) + 2lπ

3

)
+ i sin

(
(π/2) + 2lπ

3

))

where l = 0, 1, 2. Therefore, the roots are

cos
(π
6

)
+ i sin

(π
6

)
, cos

(
5

6
π

)
+ i sin

(
5

6
π

)
,

and

cos

(
3

2
π

)
+ i sin

(
3

2
π

)
.

Thus the cube roots of i are

√
3

2
+ i

(
1

2

)
,
−
√
3

2
+ i

(
1

2

)
, and −i.

The ability to find kth roots can also be used to factor some polynomials.

Example 1.6.4 Factor the polynomial x3 − 27.

First find the cube roots of 27. By the above procedure using De Moivre’s theorem, these cube

roots are 3, 3

(
−1

2
+ i

√
3

2

)
, and 3

(
−1

2
− i

√
3

2

)
. Therefore, x3 + 27 =

(x− 3)

(
x− 3

(
−1

2
+ i

√
3

2

))(
x− 3

(
−1

2
− i

√
3

2

))
.

Note also

(
x− 3

(
−1

2
+ i

√
3

2

))(
x− 3

(
−1

2
− i

√
3

2

))
= x2 + 3x+ 9 and so

x3 − 27 = (x− 3)
(
x2 + 3x+ 9

)
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where the quadratic polynomial x2 + 3x+ 9 cannot be factored without using complex numbers.
Note that even though the polynomial x3−27 has all real coefficients, it has some complex zeros,

−1

2
+ i

√
3

2
and

−1

2
− i

√
3

2
. These zeros are complex conjugates of each other. It is always this way.

You should show this is the case. To see how to do this, see Problems 13 and 14 below.
Another fact for your information is the fundamental theorem of algebra. This theorem says

that any polynomial of degree at least 1 having any complex coefficients always has a root in C.
This is sometimes referred to by saying C is algebraically complete. Gauss is usually credited with
giving a proof of this theorem in 1797 but many others worked on it and the first completely correct
proof was due to Argand in 1806. For more on this theorem, you can google fundamental theorem
of algebra and look at the interesting Wikipedia article on it. Proofs of this theorem usually involve
the use of techniques from calculus even though it is really a result in algebra.

1.7 The Quadratic Formula

The quadratic formula

x =
−b±

√
b2 − 4ac

2a
gives the solutions x to

ax2 + bx+ c = 0

where a, b, c are real numbers. It holds even if b2 − 4ac < 0. This is easy to show from the above.
There are exactly two square roots to this number b2−4ac from the above methods using De Moivre’s
theorem. These roots are of the form

√
4ac− b2

(
cos
(π
2

)
+ i sin

(π
2

))
= i
√
4ac− b2

and √
4ac− b2

(
cos

(
3π

2

)
+ i sin

(
3π

2

))
= −i

√
4ac− b2

Thus the solutions, according to the quadratic formula are still given correctly by the above formula.
Do these solutions predicted by the quadratic formula continue to solve the quadratic equation?

Yes, they do. You only need to observe that when you square a square root of a complex number z,
you recover z. Thus

a

(
−b+

√
b2 − 4ac

2a

)2

+ b

(
−b+

√
b2 − 4ac

2a

)
+ c

= a

(
1

2a2
b2 − 1

a
c− 1

2a2
b
√
b2 − 4ac

)

+b

(
−b+

√
b2 − 4ac

2a

)
+ c

=

(
− 1

2a

(
b
√
b2 − 4ac+ 2ac− b2

))

+
1

2a

(
b
√
b2 − 4ac− b2

)
+ c = 0

Similar reasoning shows directly that −b−
√
b2−4ac
2a also solves the quadratic equation.

What if the coefficients of the quadratic equation are actually complex numbers? Does the
formula hold even in this case? The answer is yes. This is a hint on how to do Problem 23 below, a
special case of the fundamental theorem of algebra, and an ingredient in the proof of some versions
of this theorem.
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Example 1.7.1 Find the solutions to x2 − 2ix− 5 = 0.

Formally, from the quadratic formula, these solutions are

x =
2i±

√
−4 + 20

2
=

2i± 4

2
= i± 2.

Now you can check that these really do solve the equation. In general, this will be the case. See
Problem 23 below.

1.8 Exercises

1. Let z = 5 + i9. Find z−1.

2. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

3. Give the complete solution to x4 + 16 = 0.

4. Graph the complex cube roots of 8 in the complex plane. Do the same for the four fourth
roots of 16. ◮

5. If z is a complex number, show there exists ω a complex number with |ω| = 1 and ωz = |z| .

6. De Moivre’s theorem says [r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) for n a positive integer.

Does this formula continue to hold for all integers n, even negative integers? Explain. ◮

7. You already know formulas for cos (x+ y) and sin (x+ y) and these were used to prove De
Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for sin (5x) and one for
cos (5x). ◮

8. If z and w are two complex numbers and the polar form of z involves the angle θ while the
polar form of w involves the angle φ, show that in the polar form for zw the angle involved is
θ + φ. Also, show that in the polar form of a complex number z, r = |z| .

9. Factor x3 + 8 as a product of linear factors.

10. Write x3+27 in the form (x+ 3)
(
x2 + ax+ b

)
where x2+ax+ b cannot be factored any more

using only real numbers.

11. Completely factor x4 + 16 as a product of linear factors.

12. Factor x4 + 16 as the product of two quadratic polynomials each of which cannot be factored
further without using complex numbers.

13. If z, w are complex numbers prove zw = zw and then show by induction that z1 · · · zm =
z1 · · · zm. Also verify that

∑m
k=1 zk =

∑m
k=1 zk. In words this says the conjugate of a prod-

uct equals the product of the conjugates and the conjugate of a sum equals the sum of the
conjugates.

14. Suppose p (x) = anx
n+ an−1x

n−1+ · · ·+ a1x+ a0 where all the ak are real numbers. Suppose
also that p (z) = 0 for some z ∈ C. Show it follows that p (z) = 0 also.

15. Show that 1 + i, 2 + i are the only two zeros to

p (x) = x2 − (3 + 2i)x+ (1 + 3i)

so the zeros do not necessarily come in conjugate pairs if the coefficients are not real.
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16. I claim that 1 = −1. Here is why.

−1 = i2 =
√
−1

√
−1 =

√
(−1)

2
=

√
1 = 1.

This is clearly a remarkable result but is there something wrong with it? If so, what is wrong?

17. De Moivre’s theorem is really a grand thing. I plan to use it now for rational exponents, not
just integers.

1 = 1(1/4) = (cos 2π + i sin 2π)
1/4

= cos (π/2) + i sin (π/2) = i.

Therefore, squaring both sides it follows 1 = −1 as in the previous problem. What does this
tell you about De Moivre’s theorem? Is there a profound difference between raising numbers
to integer powers and raising numbers to non integer powers?

18. Review Problem 6 at this point. Now here is another question: If n is an integer, is it always
true that (cos θ − i sin θ)

n
= cos (nθ)− i sin (nθ)? Explain.

19. Suppose you have any polynomial in cos θ and sin θ. By this I mean an expression of the
form

∑m
α=0

∑n
β=0 aαβ cos

α θ sinβ θ where aαβ ∈ C. Can this always be written in the form∑m+n
γ=−(n+m) bγ cos γθ +

∑n+m
τ=−(n+m) cτ sin τθ? Explain.

20. Suppose p (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 is a polynomial and it has n zeros,

z1, z2, · · · , zn

listed according to multiplicity. (z is a root of multiplicitym if the polynomial f (x) = (x− z)
m

divides p (x) but (x− z) f (x) does not.) Show that

p (x) = an (x− z1) (x− z2) · · · (x− zn) .

21. Give the solutions to the following quadratic equations having real coefficients.

(a) x2 − 2x+ 2 = 0

(b) 3x2 + x+ 3 = 0

(c) x2 − 6x+ 13 = 0

(d) x2 + 4x+ 9 = 0

(e) 4x2 + 4x+ 5 = 0

22. Give the solutions to the following quadratic equations having complex coefficients. Note how
the solutions do not come in conjugate pairs as they do when the equation has real coefficients.

(a) x2 + 2x+ 1 + i = 0

(b) 4x2 + 4ix− 5 = 0

(c) 4x2 + (4 + 4i)x+ 1 + 2i = 0

(d) x2 − 4ix− 5 = 0

(e) 3x2 + (1− i)x+ 3i = 0

23. Prove the fundamental theorem of algebra for quadratic polynomials having coefficients in C.
That is, show that an equation of the form ax2+ bx+ c = 0 where a, b, c are complex numbers,
a ̸= 0 has a complex solution. Hint: Consider the fact, noted earlier that the expressions
given from the quadratic formula do in fact serve as solutions.
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The notation, Cn refers to the collection of ordered lists of n complex numbers. Since every real
number is also a complex number, this simply generalizes the usual notion of Rn, the collection of
all ordered lists of n real numbers. In order to avoid worrying about whether it is real or complex
numbers which are being referred to, the symbol F will be used. If it is not clear, always pick C.

Definition 2.0.1 Define Fn ≡ {(x1, · · · , xn) : xj ∈ F for j = 1, · · · , n} .

(x1, · · · , xn) = (y1, · · · , yn)

if and only if for all j = 1, · · · , n, xj = yj . When (x1, · · · , xn) ∈ Fn, it is conventional to denote
(x1, · · · , xn) by the single bold face letter, x. The numbers, xj are called the coordinates. Elements
in Fn are called vectors. The set

{(0, · · · , 0, t, 0, · · · , 0) : t ∈ R}

for t in the ith slot is called the ith coordinate axis in the case of Rn. The point 0 ≡ (0, · · · , 0) is
called the origin.

Thus (1, 2, 4i) ∈ F3 and (2, 1, 4i) ∈ F3 but (1, 2, 4i) ̸= (2, 1, 4i) because, even though the same
numbers are involved, they don’t match up. In particular, the first entries are not equal.

The geometric significance of Rn for n ≤ 3 has been encountered already in calculus or in pre-
calculus. Here is a short review. First consider the case when n = 1. Then from the definition,
R1 = R. Recall that R is identified with the points of a line. Look at the number line again.
Observe that this amounts to identifying a point on this line with a real number. In other words a
real number determines where you are on this line. Now suppose n = 2 and consider two lines which
intersect each other at right angles as shown in the following picture.

2

6 (2, 6)

−8

3·(−8, 3)

Notice how you can identify a point shown in the plane with the ordered pair, (2, 6) . You go to
the right a distance of 2 and then up a distance of 6. Similarly, you can identify another point in the
plane with the ordered pair (−8, 3) . Go to the left a distance of 8 and then up a distance of 3. The
reason you go to the left is that there is a − sign on the eight. From this reasoning, every ordered
pair determines a unique point in the plane. Conversely, taking a point in the plane, you could draw

23
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two lines through the point, one vertical and the other horizontal and determine unique points, x1
on the horizontal line in the above picture and x2 on the vertical line in the above picture, such that
the point of interest is identified with the ordered pair, (x1, x2) . In short, points in the plane can be
identified with ordered pairs similar to the way that points on the real line are identified with real
numbers. Now suppose n = 3. As just explained, the first two coordinates determine a point in a
plane. Letting the third component determine how far up or down you go, depending on whether
this number is positive or negative, this determines a point in space. Thus, (1, 4,−5) would mean
to determine the point in the plane that goes with (1, 4) and then to go below this plane a distance
of 5 to obtain a unique point in space. You see that the ordered triples correspond to points in
space just as the ordered pairs correspond to points in a plane and single real numbers correspond
to points on a line.

You can’t stop here and say that you are only interested in n ≤ 3. What if you were interested
in the motion of two objects? You would need three coordinates to describe where the first object
is and you would need another three coordinates to describe where the other object is located.
Therefore, you would need to be considering R6. If the two objects moved around, you would need
a time coordinate as well. As another example, consider a hot object which is cooling and suppose
you want the temperature of this object. How many coordinates would be needed? You would need
one for the temperature, three for the position of the point in the object and one more for the time.
Thus you would need to be considering R5. Many other examples can be given. Sometimes n is very
large. This is often the case in applications to business when they are trying to maximize profit
subject to constraints. It also occurs in numerical analysis when people try to solve hard problems
on a computer.

There are other ways to identify points in space with three numbers but the one presented is
the most basic. In this case, the coordinates are known as Cartesian coordinates after Descartes1

who invented this idea in the first half of the seventeenth century. I will often not bother to draw a
distinction between the point in space and its Cartesian coordinates.

The geometric significance of Cn for n > 1 is not available because each copy of C corresponds
to the plane or R2.

2.1 Algebra in Fn

There are two algebraic operations done with elements of Fn. One is addition and the other is
multiplication by numbers, called scalars. In the case of Cn the scalars are complex numbers while
in the case of Rn the only allowed scalars are real numbers. Thus, the scalars always come from F
in either case.

Definition 2.1.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined by

ax = a (x1, · · · , xn) ≡ (ax1, · · · , axn) . (2.1)

This is known as scalar multiplication. If x,y ∈ Fn then x+ y ∈ Fn and is defined by

x+ y = (x1, · · · , xn) + (y1, · · · , yn)
≡ (x1 + y1, · · · , xn + yn) (2.2)

Fn is often called n dimensional space. With this definition, vector addition and scalar multipli-
cation satisfy the conclusions of the following theorem. More generally, these properties are called
the vector space axioms.

1René Descartes 1596-1650 is often credited with inventing analytic geometry although it seems the ideas were

actually known much earlier. He was interested in many different subjects, physiology, chemistry, and physics being

some of them. He also wrote a large book in which he tried to explain the book of Genesis scientifically. Descartes

ended up dying in Sweden.
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Theorem 2.1.2 For v,w ∈ Fn and α, β scalars, (real numbers), the following hold.

v +w = w + v, (2.3)

the commutative law of addition,

(v +w) + z = v+(w + z) , (2.4)

the associative law for addition,
v + 0 = v, (2.5)

the existence of an additive identity,
v+(−v) = 0, (2.6)

the existence of an additive inverse, Also

α (v +w) = αv+αw, (2.7)

(α+ β)v =αv+βv, (2.8)

α (βv) = αβ (v) , (2.9)

1v = v. (2.10)

In the above 0 = (0, · · · , 0).

You should verify these properties all hold. For example, consider (2.7)

α (v +w) = α (v1 + w1, · · · , vn + wn)

= (α (v1 + w1) , · · · , α (vn + wn))

= (αv1 + αw1, · · · , αvn + αwn)

= (αv1, · · · , αvn) + (αw1, · · · , αwn) = αv + αw.

As usual subtraction is defined as x− y ≡ x+(−y) .

2.2 Geometric Meaning Of Vectors

The geometric meaning is especially significant in the case of Rn for n = 2, 3. Here is a short
discussion of this topic.

Definition 2.2.1 Let x = (x1, · · · , xn) be the coordinates of a point in Rn. Imagine an arrow with
its tail at 0 = (0, · · · , 0) and its point at x as shown in the following picture in the case of R3.

✸
(x1, x2, x3) = x

Then this arrow is called the position vector of the point x. Given two points, P,Q whose
coordinates are (p1, · · · , pn) and (q1, · · · , qn) respectively, one can also determine the position vector
from P to Q defined as follows.

−−→
PQ ≡ (q1 − p1, · · · , qn − pn)
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Thus every point determines a vector and conversely, every such vector (arrow) which has its tail
at 0 determines a point of Rn, namely the point of Rn which coincides with the point of the vector.
Also two different points determine a position vector going from one to the other as just explained.

Imagine taking the above position vector and moving it around, always keeping it pointing in
the same direction as shown in the following picture.

✸
(x1, x2, x3) = x✸

✸ ✸

After moving it around, it is regarded as the same vector because it points in the same direction
and has the same length.2Thus each of the arrows in the above picture is regarded as the same
vector. The components of this vector are the numbers, x1, · · · , xn. You should think of these
numbers as directions for obtaining an arrow. Starting at some point (a1, a2, · · · , an) in Rn, you
move to the point (a1 + x1, · · · , an) and from there to the point (a1 + x1, a2 + x2, a3 · · · , an) and
then to (a1 + x1, a2 + x2, a3 + x3, · · · , an) and continue this way until you obtain the point

(a1 + x1, a2 + x2, · · · , an + xn) .

The arrow having its tail at (a1, a2, · · · , an) and its point at

(a1 + x1, a2 + x2, · · · , an + xn)

looks just like the arrow which has its tail at 0 and its point at (x1, · · · , xn) so it is regarded as the
same vector.

2.3 Geometric Meaning Of Vector Addition

It was explained earlier that an element of Rn is an n tuple of numbers and it was also shown that
this can be used to determine a point in three dimensional space in the case where n = 3 and in two
dimensional space, in the case where n = 2. This point was specified relative to some coordinate
axes.

Consider the case where n = 3 for now. If you draw an arrow from the point in three dimensional
space determined by (0, 0, 0) to the point (a, b, c) with its tail sitting at the point (0, 0, 0) and its
point at the point (a, b, c) , this arrow is called the position vector of the point determined by
u ≡ (a, b, c) . One way to get to this point is to start at (0, 0, 0) and move in the direction of the
x1 axis to (a, 0, 0) and then in the direction of the x2 axis to (a, b, 0) and finally in the direction
of the x3 axis to (a, b, c) . It is evident that the same arrow (vector) would result if you began at
the point v ≡ (d, e, f) , moved in the direction of the x1 axis to (d+ a, e, f) , then in the direction
of the x2 axis to (d+ a, e+ b, f) , and finally in the x3 direction to (d+ a, e+ b, f + c) only this
time, the arrow would have its tail sitting at the point determined by v ≡ (d, e, f) and its point
at (d+ a, e+ b, f + c) . It is said to be the same arrow (vector) because it will point in the same
direction and have the same length. It is like you took an actual arrow, the sort of thing you shoot
with a bow, and moved it from one location to another keeping it pointing the same direction. This is
illustrated in the following picture in which v + u is illustrated. Note the parallelogram determined
in the picture by the vectors u and v.

2I will discuss how to define length later. For now, it is only necessary to observe that the length should be defined

in such a way that it does not change when such motion takes place.
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✒
u

✗

v

✕

u+ v

■

✒

u

x1

x3

x2

Thus the geometric significance of (d, e, f) + (a, b, c) = (d+ a, e+ b, f + c) is this. You start
with the position vector of the point (d, e, f) and at its point, you place the vector determined by
(a, b, c) with its tail at (d, e, f) . Then the point of this last vector will be (d+ a, e+ b, f + c) . This
is the geometric significance of vector addition. Also, as shown in the picture, u + v is the directed
diagonal of the parallelogram determined by the two vectors u and v. A similar interpretation holds
in Rn, n > 3 but I can’t draw a picture in this case.

Since the convention is that identical arrows pointing in the same direction represent the same
vector, the geometric significance of vector addition is as follows in any number of dimensions.

Procedure 2.3.1 Let u and v be two vectors. Slide v so that the tail of v is on the point of u.
Then draw the arrow which goes from the tail of u to the point of the slid vector v. This arrow
represents the vector u+ v.

✲

✒✯

u

u+ v
v

Note that P+
−−→
PQ = Q.

2.4 Distance Between Points In Rn Length Of A Vector

How is distance between two points in Rn defined?

Definition 2.4.1 Let x =(x1, · · · , xn) and y =(y1, · · · , yn) be two points in Rn. Then |x− y| to
indicates the distance between these points and is defined as

distance between x and y ≡ |x− y| ≡
(

n∑

k=1

|xk − yk|2
)1/2

.

This is called the distance formula. Thus |x| ≡ |x− 0| . The symbol, B (a, r) is defined by

B (a, r) ≡ {x ∈ Rn : |x− a| < r} .

This is called an open ball of radius r centered at a. It means all points in Rn which are closer to
a than r. The length of a vector x is the distance between x and 0.
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First of all, note this is a generalization of the notion of distance in R. There the distance between
two points, x and y was given by the absolute value of their difference. Thus |x− y| is equal to

the distance between these two points on R. Now |x− y| =
(
(x− y)

2
)1/2

where the square root is

always the positive square root. Thus it is the same formula as the above definition except there is
only one term in the sum. Geometrically, this is the right way to define distance which is seen from
the Pythagorean theorem. Often people use two lines to denote this distance, ||x− y||. However, I
want to emphasize this is really just like the absolute value. Also, the notation I am using is fairly
standard.

Consider the following picture in the case that n = 2.

(x1, x2) (y1, x2)

(y1, y2)

There are two points in the plane whose Cartesian coordinates are (x1, x2) and (y1, y2) respec-
tively. Then the solid line joining these two points is the hypotenuse of a right triangle which is
half of the rectangle shown in dotted lines. What is its length? Note the lengths of the sides of this
triangle are |y1 − x1| and |y2 − x2| . Therefore, the Pythagorean theorem implies the length of the
hypotenuse equals

(
|y1 − x1|2 + |y2 − x2|2

)1/2
=
(
(y1 − x1)

2
+ (y2 − x2)

2
)1/2

which is just the formula for the distance given above. In other words, this distance defined above
is the same as the distance of plane geometry in which the Pythagorean theorem holds.

Now suppose n = 3 and let (x1, x2, x3) and (y1, y2, y3) be two points in R3. Consider the following
picture in which one of the solid lines joins the two points and a dotted line joins the points (x1, x2, x3)
and (y1, y2, x3) .

(x1, x2, x3) (y1, x2, x3)

(y1, y2, x3)

(y1, y2, y3)

By the Pythagorean theorem, the length of the dotted line joining (x1, x2, x3) and (y1, y2, x3)
equals (

(y1 − x1)
2
+ (y2 − x2)

2
)1/2

while the length of the line joining (y1, y2, x3) to (y1, y2, y3) is just |y3 − x3| . Therefore, by the
Pythagorean theorem again, the length of the line joining the points (x1, x2, x3) and (y1, y2, y3)
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equals

{[(
(y1 − x1)

2
+ (y2 − x2)

2
)1/2]2

+ (y3 − x3)
2

}1/2

=
(
(y1 − x1)

2
+ (y2 − x2)

2
+ (y3 − x3)

2
)1/2

,

which is again just the distance formula above.
This completes the argument that the above definition is reasonable. Of course you cannot

continue drawing pictures in ever higher dimensions but there is no problem with the formula for
distance in any number of dimensions. Here is an example.

Example 2.4.2 Find the distance between the points in R4,

a =(1, 2,−4, 6)

and
b =(2, 3,−1, 0)

Use the distance formula and write

|a− b|2 = (1− 2)
2
+ (2− 3)

2
+ (−4− (−1))

2
+ (6− 0)

2
= 47

Therefore, |a− b| =
√
47.

All this amounts to defining the distance between two points as the length of a straight line
joining these two points. However, there is nothing sacred about using straight lines. One could
define the distance to be the length of some other sort of line joining these points. It won’t be done
in this book but sometimes this sort of thing is done.

Another convention which is usually followed, especially in R2 and R3 is to denote the first
component of a point in R2 by x and the second component by y. In R3 it is customary to denote
the first and second components as just described while the third component is called z.

Example 2.4.3 Describe the points which are at the same distance between (1, 2, 3) and (0, 1, 2) .

Let (x, y, z) be such a point. Then

√
(x− 1)

2
+ (y − 2)

2
+ (z − 3)

2
=

√
x2 + (y − 1)

2
+ (z − 2)

2
.

Squaring both sides

(x− 1)
2
+ (y − 2)

2
+ (z − 3)

2
= x2 + (y − 1)

2
+ (z − 2)

2

and so
x2 − 2x+ 14 + y2 − 4y + z2 − 6z = x2 + y2 − 2y + 5 + z2 − 4z

which implies
−2x+ 14− 4y − 6z = −2y + 5− 4z

and so
2x+ 2y + 2z = −9. (2.11)

Since these steps are reversible, the set of points which is at the same distance from the two given
points consists of the points, (x, y, z) such that (2.11) holds.

There are certain properties of the distance which are obvious. Two of them which follow directly
from the definition are
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|x− y| = |y − x| ,
|x− y| ≥ 0 and equals 0 only if y = x.

The third fundamental property of distance is known as the triangle inequality. Recall that in any
triangle the sum of the lengths of two sides is always at least as large as the third side. I will show
you a proof of this later. This is usually stated as

|x+ y| ≤ |x|+ |y| .

Here is a picture which illustrates the statement of this inequality in terms of geometry.

✲

✸✕
x+ y

x

y

2.5 Geometric Meaning Of Scalar Multiplication

As discussed earlier, x = (x1, x2, x3) determines a vector. You draw the line from 0 to x placing the
point of the vector on x. What is the length of this vector? The length of this vector is defined to
equal |x| as in Definition 2.4.1. Thus the length of x equals

√
x21 + x22 + x23. When you multiply x

by a scalar α, you get (αx1, αx2, αx3) and the length of this vector is defined as

√(
(αx1)

2
+ (αx2)

2
+ (αx3)

2
)
= |α|

√
x21 + x22 + x23.

Thus the following holds.
|αx| = |α| |x| .

In other words, multiplication by a scalar magnifies the length of the vector. What about the
direction? You should convince yourself by drawing a picture that if α is negative, it causes the
resulting vector to point in the opposite direction while if α > 0 it preserves the direction the vector
points.

You can think of vectors as quantities which have direction and magnitude, little arrows. Thus
any two little arrows which have the same length and point in the same direction are considered to
be the same vector even if their tails are at different points.

✍

✍

✍

✍

You can always slide such an arrow and place its tail at the origin. If the resulting point of the
vector is (a, b, c) , it is clear the length of the little arrow is

√
a2 + b2 + c2. Geometrically, the way

you add two geometric vectors is to place the tail of one on the point of the other and then to form
the vector which results by starting with the tail of the first and ending with this point as illustrated
in the following picture. Also when (a, b, c) is referred to as a vector, you mean any of the arrows
which have the same direction and magnitude as the position vector of this point. Geometrically,
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for u =(u1, u2, u3) , αu is any of the little arrows which have the same direction and magnitude as
(αu1, αu2, αu3) .

✍

✶

✶
✒

u

v

u+ v

The following example is art which illustrates these definitions and conventions.

Exercise 2.5.1 Here is a picture of two vectors, u and v.

u

✒

v ❥

Sketch a picture of u+ v,u− v, and u+2v.

First here is a picture of u+ v. You first draw u and then at the point of u you place the tail of
v as shown. Then u+ v is the vector which results which is drawn in the following pretty picture.

u

✒
v ❥

u+ v

✿

Next consider u− v. This means u+(−v) . From the above geometric description of vector
addition, −v is the vector which has the same length but which points in the opposite direction to
v. Here is a picture.

u

✒

−v❨

u+ (−v)

✻

Finally consider the vector u+2v. Here is a picture of this one also.

u

✒ 2v

❥
u+ 2v

✲

2.6 Exercises

1. Verify all the properties (2.3)-(2.10).
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2. Compute 5 (1, 2 + 3i, 3,−2) + 6 (2− i, 1,−2, 7) .

3. Draw a picture of the points in R2 which are determined by the following ordered pairs.

(a) (1, 2)

(b) (−2,−2)

(c) (−2, 3)

(d) (2,−5)

4. Does it make sense to write (1, 2) + (2, 3, 1)? Explain.

5. Draw a picture of the points in R3 which are determined by the following ordered triples.

(a) (1, 2, 0)

(b) (−2,−2, 1)

(c) (−2, 3,−2)

2.7 Vectors And Physics

Suppose you push on something. What is important? There are really two things which are impor-
tant, how hard you push and the direction you push. This illustrates the concept of force.

Definition 2.7.1 Force is a vector. The magnitude of this vector is a measure of how hard it is
pushing. It is measured in units such as Newtons or pounds or tons. Its direction is the direction in
which the push is taking place.

Vectors are used to model force and other physical vectors like velocity. What was just described
would be called a force vector. It has two essential ingredients, its magnitude and its direction.
Geometrically think of vectors as directed line segments or arrows as shown in the following picture
in which all the directed line segments are considered to be the same vector because they have the
same direction, the direction in which the arrows point, and the same magnitude (length).

✍

✍

✍

✍

Because of this fact that only direction and magnitude are important, it is always possible to put
a vector in a certain particularly simple form. Let −→pq be a directed line segment or vector. Then it
follows that −→pq consists of the points of the form

p+ t (q− p)

where t ∈ [0, 1] . Subtract p from all these points to obtain the directed line segment consisting of
the points

0+ t (q− p) , t ∈ [0, 1] .

The point in Rn,q− p, will represent the vector.
Geometrically, the arrow, −→pq, was slid so it points in the same direction and the base is at the

origin, 0. For example, see the following picture.
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✍ ✍

✍

In this way vectors can be identified with points of Rn.

Definition 2.7.2 Let x =(x1, · · · , xn) ∈ Rn. The position vector of this point is the vector
whose point is at x and whose tail is at the origin, (0, · · · , 0). If x =(x1, · · · , xn) is called a vector,
the vector which is meant is this position vector just described. Another term associated with this is
standard position. A vector is in standard position if the tail is placed at the origin.

It is customary to identify the point in Rn with its position vector.
The magnitude of a vector determined by a directed line segment −→pq is just the distance between

the point p and the point q. By the distance formula this equals

(
n∑

k=1

(qk − pk)
2

)1/2

= |p− q|

and for v any vector in Rn the magnitude of v equals
(∑n

k=1 v
2
k

)1/2
= |v|.

Example 2.7.3 Consider the vector v ≡ (1, 2, 3) in Rn. Find |v| .

First, the vector is the directed line segment (arrow) which has its base at 0 ≡ (0, 0, 0) and its
point at (1, 2, 3) . Therefore,

|v| =
√
12 + 22 + 32 =

√
14.

What is the geometric significance of scalar multiplication? If a represents the vector v in the
sense that when it is slid to place its tail at the origin, the element of Rn at its point is a, what is
rv?

|rv| =
(

n∑

k=1

(rai)
2

)1/2

=

(
n∑

k=1

r2 (ai)
2

)1/2

=
(
r2
)1/2

(
n∑

k=1

a2i

)1/2

= |r| |v| .

Thus the magnitude of rv equals |r| times the magnitude of v. If r is positive, then the vector
represented by rv has the same direction as the vector v because multiplying by the scalar r, only
has the effect of scaling all the distances. Thus the unit distance along any coordinate axis now has
length r and in this rescaled system the vector is represented by a. If r < 0 similar considerations
apply except in this case all the ai also change sign. From now on, a will be referred to as a vector
instead of an element of Rn representing a vector as just described. The following picture illustrates
the effect of scalar multiplication.

✍
v

✍

2v

✌

−2v
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Note there are n special vectors which point along the coordinate axes. These are

ei ≡ (0, · · · , 0, 1, 0, · · · , 0)

where the 1 is in the ith slot and there are zeros in all the other spaces. See the picture in the case
of R3.

✲
ye2

✻

z

e3

✠

x

e1

The direction of ei is referred to as the ith direction. Given a vector v = (a1, · · · , an) , aiei is
the ith component of the vector. Thus

aiei = (0, · · · , 0, ai, 0, · · · , 0)

and so this vector gives something possibly nonzero only in the ith direction. Also, knowledge of
the ith component of the vector is equivalent to knowledge of the vector because it gives the entry
in the ith slot and for v = (a1, · · · , an) ,

v =
n∑

k=1

aiei.

What does addition of vectors mean physically? Suppose two forces are applied to some object.
Each of these would be represented by a force vector and the two forces acting together would yield an
overall force acting on the object which would also be a force vector known as the resultant. Suppose
the two vectors are a =

∑n
k=1 aiei and b =

∑n
k=1 biei. Then the vector a involves a component in

the ith direction, aiei while the component in the ith direction of b is biei. Then it seems physically
reasonable that the resultant vector should have a component in the ith direction equal to (ai + bi) ei.
This is exactly what is obtained when the vectors, a and b are added.

a+ b = (a1 + b1, · · · , an + bn) .

=
n∑

i=1

(ai + bi) ei.

Thus the addition of vectors according to the rules of addition in Rn which were presented earlier,
yields the appropriate vector which duplicates the cumulative effect of all the vectors in the sum.

What is the geometric significance of vector addition? Suppose u,v are vectors,

u =(u1, · · · , un) ,v =(v1, · · · , vn)

Then u+ v =(u1 + v1, · · · , un + vn) . How can one obtain this geometrically? Consider the directed

line segment,
−→
0u and then, starting at the end of this directed line segment, follow the directed line

segment
−−−−−−→
u (u+ v) to its end, u+ v. In other words, place the vector u in standard position with its

base at the origin and then slide the vector v till its base coincides with the point of u. The point
of this slid vector determines u+ v. To illustrate, see the following picture
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✍

✶

✶
✒

u

v

u+ v

Note the vector u+ v is the diagonal of a parallelogram determined from the two vectors u and
v and that identifying u+ v with the directed diagonal of the parallelogram determined by the
vectors u and v amounts to the same thing as the above procedure.

An item of notation should be mentioned here. In the case of Rn where n ≤ 3, it is standard
notation to use i for e1, j for e2, and k for e3. Now here are some applications of vector addition to
some problems.

Example 2.7.4 There are three ropes attached to a car and three people pull on these ropes. The
first exerts a force of 2i+3j−2k Newtons, the second exerts a force of 3i+5j+ k Newtons and the
third exerts a force of 5i− j+2k. Newtons. Find the total force in the direction of i.

To find the total force add the vectors as described above. This gives 10i+7j+ k Newtons.
Therefore, the force in the i direction is 10 Newtons.

As mentioned earlier, the Newton is a unit of force like pounds.

Example 2.7.5 An airplane flies North East at 100 miles per hour. Write this as a vector.

A picture of this situation follows.

✒

The vector has length 100. Now using that vector as the hypotenuse of a right triangle having
equal sides, the sides should be each of length 100/

√
2. Therefore, the vector would be 100/

√
2i +

100/
√
2j.

This example also motivates the concept of velocity.

Definition 2.7.6 The speed of an object is a measure of how fast it is going. It is measured in
units of length per unit time. For example, miles per hour, kilometers per minute, feet per second.
The velocity is a vector having the speed as the magnitude but also specifying the direction.

Thus the velocity vector in the above example is 100/
√
2i+ 100/

√
2j.

Example 2.7.7 The velocity of an airplane is 100i + j + k measured in kilometers per hour and
at a certain instant of time its position is (1, 2, 1) . Here imagine a Cartesian coordinate system in
which the third component is altitude and the first and second components are measured on a line
from West to East and a line from South to North. Find the position of this airplane one minute
later.

Consider the vector (1, 2, 1) , is the initial position vector of the airplane. As it moves, the
position vector changes. After one minute the airplane has moved in the i direction a distance of
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100 × 1
60 = 5

3 kilometer. In the j direction it has moved 1
60 kilometer during this same time, while

it moves 1
60 kilometer in the k direction. Therefore, the new displacement vector for the airplane is

(1, 2, 1) +

(
5

3
,
1

60
,
1

60

)
=

(
8

3
,
121

60
,
121

60

)

Example 2.7.8 A certain river is one half mile wide with a current flowing at 4 miles per hour
from East to West. A man swims directly toward the opposite shore from the South bank of the
river at a speed of 3 miles per hour. How far down the river does he find himself when he has swam
across? How far does he end up swimming?

Consider the following picture.

✛ 4

✻

3

You should write these vectors in terms of components. The velocity of the swimmer in still water
would be 3j while the velocity of the river would be −4i. Therefore, the velocity of the swimmer is
−4i + 3j. Since the component of velocity in the direction across the river is 3, it follows the trip
takes 1/6 hour or 10 minutes. The speed at which he travels is

√
42 + 32 = 5 miles per hour and

so he travels 5 × 1
6 = 5

6 miles. Now to find the distance downstream he finds himself, note that
if x is this distance, x and 1/2 are two legs of a right triangle whose hypotenuse equals 5/6 miles.
Therefore, by the Pythagorean theorem the distance downstream is

√
(5/6)

2 − (1/2)
2
=

2

3
miles.

2.8 Exercises

1. The wind blows from West to East at a speed of 50 miles per hour and an airplane which
travels at 300 miles per hour in still air is heading North West. What is the velocity of the
airplane relative to the ground? What is the component of this velocity in the direction North?

2. In the situation of Problem 1 how many degrees to the West of North should the airplane head
in order to fly exactly North. What will be the speed of the airplane relative to the ground?

3. In the situation of 2 suppose the airplane uses 34 gallons of fuel every hour at that air speed
and that it needs to fly North a distance of 600 miles. Will the airplane have enough fuel to
arrive at its destination given that it has 63 gallons of fuel?

4. An airplane is flying due north at 150 miles per hour. A wind is pushing the airplane due east
at 40 miles per hour. After 1 hour, the plane starts flying 30◦ East of North. Assuming the
plane starts at (0, 0) , where is it after 2 hours? Let North be the direction of the positive y
axis and let East be the direction of the positive x axis.

5. City A is located at the origin while city B is located at (300, 500) where distances are in miles.
An airplane flies at 250 miles per hour in still air. This airplane wants to fly from city A to
city B but the wind is blowing in the direction of the positive y axis at a speed of 50 miles per
hour. Find a unit vector such that if the plane heads in this direction, it will end up at city B
having flown the shortest possible distance. How long will it take to get there?

6. A certain river is one half mile wide with a current flowing at 2 miles per hour from East to
West. A man swims directly toward the opposite shore from the South bank of the river at
a speed of 3 miles per hour. How far down the river does he find himself when he has swam
across? How far does he end up swimming?
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7. A certain river is one half mile wide with a current flowing at 2 miles per hour from East to
West. A man can swim at 3 miles per hour in still water. In what direction should he swim
in order to travel directly across the river? What would the answer to this problem be if the
river flowed at 3 miles per hour and the man could swim only at the rate of 2 miles per hour?

8. Three forces are applied to a point which does not move. Two of the forces are 2i + j + 3k
Newtons and i− 3j+ 2k Newtons. Find the third force.

9. The total force acting on an object is to be 2i+ j+k Newtons. A force of −i+ j+k Newtons
is being applied. What other force should be applied to achieve the desired total force?

10. A bird flies from its nest 5 km. in the direction 60◦ north of east where it stops to rest on a
tree. It then flies 10 km. in the direction due southeast and lands atop a telephone pole. Place
an xy coordinate system so that the origin is the bird’s nest, and the positive x axis points
east and the positive y axis points north. Find the displacement vector from the nest to the
telephone pole.

11. A car is stuck in the mud. There is a cable stretched tightly from this car to a tree which is
20 feet long. A person grasps the cable in the middle and pulls with a force of 100 pounds
perpendicular to the stretched cable. The center of the cable moves two feet and remains still.
What is the tension in the cable? The tension in the cable is the force exerted on this point
by the part of the cable nearer the car as well as the force exerted on this point by the part of
the cable nearer the tree.
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Vector Products

3.1 The Dot Product

There are two ways of multiplying vectors which are of great importance in applications. The first of
these is called the dot product, also called the scalar product and sometimes the inner product.

Definition 3.1.1 Let a,b be two vectors in Rn define a · b as

a · b ≡
n∑

k=1

akbk.

The dot product a · b is sometimes denoted as (a,b) where a comma replaces ·.

With this definition, there are several important properties satisfied by the dot product. In the
statement of these properties, α and β will denote scalars and a,b, c will denote vectors.

Proposition 3.1.2 The dot product satisfies the following properties.

a · b = b · a (3.1)

a · a ≥ 0 and equals zero if and only if a = 0 (3.2)

(αa+ βb) · c =α (a · c) + β (b · c) (3.3)

c · (αa+ βb) = α (c · a) + β (c · b) (3.4)

|a|2 = a · a (3.5)

You should verify these properties. Also be sure you understand that (3.4) follows from the first
three and is therefore redundant. It is listed here for the sake of convenience.

Example 3.1.3 Find (1, 2, 0,−1) · (0, 1, 2, 3) .

This equals 0 + 2 + 0 +−3 = −1.

Example 3.1.4 Find the magnitude of a =(2, 1, 4, 2) . That is, find |a| .

This is
√
(2, 1, 4, 2) · (2, 1, 4, 2) = 5.

The dot product satisfies a fundamental inequality known as the Cauchy Schwarz inequality.

Theorem 3.1.5 The dot product satisfies the inequality

|a · b| ≤ |a| |b| . (3.6)

Furthermore equality is obtained if and only if one of a or b is a scalar multiple of the other.

39
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Proof: First note that if b = 0 both sides of (3.6) equal zero and so the inequality holds in this
case. Therefore, it will be assumed in what follows that b ̸= 0.

Define a function of t ∈ R
f (t) = (a+ tb) · (a+ tb) .

Then by (3.2), f (t) ≥ 0 for all t ∈ R. Also from (3.3),(3.4),(3.1), and (3.5)

f (t) = a · (a+ tb) + tb · (a+ tb)

= a · a+ t (a · b) + tb · a+ t2b · b
= |a|2 + 2t (a · b) + |b|2 t2.

Now this means the graph, y = f (t) is a polynomial which opens up and either its vertex touches
the t axis or else the entire graph is above the x axis. In the first case, there exists some t where
f (t) = 0 and this requires a+ tb = 0 so one vector is a multiple of the other. Then clearly equality
holds in (3.6). In the case where b is not a multiple of a, it follows f (t) > 0 for all t which says
f (t) has no real zeros and so from the quadratic formula,

(2 (a · b))2 − 4 |a|2 |b|2 < 0

which is equivalent to |(a · b)| < |a| |b|. �
You should note that the entire argument was based only on the properties of the dot product

listed in (3.1) - (3.5). This means that whenever something satisfies these properties, the Cauchy
Schwarz inequality holds. There are many other instances of these properties besides vectors in Rn.

The Cauchy Schwarz inequality allows a proof of the triangle inequality for distances in Rn

in much the same way as the triangle inequality for the absolute value.

Theorem 3.1.6 (Triangle inequality) For a,b ∈ Rn

|a+ b| ≤ |a|+ |b| (3.7)

and equality holds if and only if one of the vectors is a nonnegative scalar multiple of the other. Also

||a| − |b|| ≤ |a− b| (3.8)

Proof : By properties of the dot product and the Cauchy Schwarz inequality,

|a+ b|2 = (a+ b) · (a+ b)

= (a · a) + (a · b) + (b · a) + (b · b)
= |a|2 + 2 (a · b) + |b|2

≤ |a|2 + 2 |a · b|+ |b|2

≤ |a|2 + 2 |a| |b|+ |b|2

= (|a|+ |b|)2 .

Taking square roots of both sides you obtain (3.7).
It remains to consider when equality occurs. If either vector equals zero, then that vector equals

zero times the other vector and the claim about when equality occurs is verified. Therefore, it can
be assumed both vectors are nonzero. To get equality in the second inequality above, Theorem 3.1.5
implies one of the vectors must be a multiple of the other. Say b = αa. If α < 0 then equality
cannot occur in the first inequality because in this case

(a · b) = α |a|2 < 0 < |α| |a|2 = |a · b|

Therefore, α ≥ 0.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



3.2. THE GEOMETRIC SIGNIFICANCE OF THE DOT PRODUCT 41

To get the other form of the triangle inequality,

a = a− b+ b

so

|a| = |a− b+ b|
≤ |a− b|+ |b| .

Therefore,
|a| − |b| ≤ |a− b| (3.9)

Similarly,
|b| − |a| ≤ |b− a| = |a− b| . (3.10)

It follows from (3.9) and (3.10) that (3.8) holds. This is because ||a| − |b|| equals the left side of
either (3.9) or (3.10) and either way, ||a| − |b|| ≤ |a− b|. �

3.2 The Geometric Significance Of The Dot Product

3.2.1 The Angle Between Two Vectors

Given two vectors, a and b, the included angle is the angle between these two vectors which is less
than or equal to 180 degrees. The dot product can be used to determine the included angle between
two vectors. To see how to do this, consider the following picture.

✯

q❯

❯

b

a

a− b

θ

By the law of cosines,
|a− b|2 = |a|2 + |b|2 − 2 |a| |b| cos θ.

Also from the properties of the dot product,

|a− b|2 = (a− b) · (a− b)

= |a|2 + |b|2 − 2a · b

and so comparing the above two formulas,

a · b = |a| |b| cos θ. (3.11)

In words, the dot product of two vectors equals the product of the magnitude of the two vectors
multiplied by the cosine of the included angle. Note this gives a geometric description of the dot
product which does not depend explicitly on the coordinates of the vectors.

Example 3.2.1 Find the angle between the vectors 2i+ j− k and 3i+ 4j+ k.

The dot product of these two vectors equals 6 + 4− 1 = 9 and the norms are
√
4 + 1 + 1 =

√
6

and
√
9 + 16 + 1 =

√
26. Therefore, from (3.11) the cosine of the included angle equals

cos θ =
9√
26
√
6
= . 720 58
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Now the cosine is known, the angle can be determines by solving the equation, cos θ = . 720 58.
This will involve using a calculator or a table of trigonometric functions. The answer is θ = . 766 16
radians or in terms of degrees, θ = . 766 16× 360

2π = 43. 898◦. Recall how this last computation is done.
Set up a proportion, x

.76616 = 360
2π because 360◦ corresponds to 2π radians. However, in calculus, you

should get used to thinking in terms of radians and not degrees. This is because all the important
calculus formulas are defined in terms of radians.

Example 3.2.2 Let u,v be two vectors whose magnitudes are equal to 3 and 4 respectively and such
that if they are placed in standard position with their tails at the origin, the angle between u and the
positive x axis equals 30◦ and the angle between v and the positive x axis is -30◦. Find u · v.

From the geometric description of the dot product in (3.11)

u · v = 3× 4× cos (60◦) = 3× 4× 1/2 = 6.

Observation 3.2.3 Two vectors are said to be perpendicular if the included angle is π/2 radians
(90◦). You can tell if two nonzero vectors are perpendicular by simply taking their dot product. If
the answer is zero, this means they are perpendicular because cos θ = 0.

Example 3.2.4 Determine whether the two vectors, 2i+ j− k and 1i+ 3j+ 5k are perpendicular.

When you take this dot product you get 2+3−5 = 0 and so these two are indeed perpendicular.

Definition 3.2.5 When two lines intersect, the angle between the two lines is the smaller of the two
angles determined.

Example 3.2.6 Find the angle between the two lines, (1, 2, 0)+t (1, 2, 3) and (0, 4,−3)+t (−1, 2,−3) .

These two lines intersect, when t = 0 in the first and t = −1 in the second. It is only a matter
of finding the angle between the direction vectors. One angle determined is given by

cos θ =
−6

14
=

−3

7
. (3.12)

We don’t want this angle because it is obtuse. The angle desired is the acute angle given by

cos θ =
3

7
.

It is obtained by using replacing one of the direction vectors with −1 times it.

3.2.2 Work And Projections

Our first application will be to the concept of work. The physical concept of work does not in any
way correspond to the notion of work employed in ordinary conversation. For example, if you were
to slide a 150 pound weight off a table which is three feet high and shuffle along the floor for 50
yards, sweating profusely and exerting all your strength to keep the weight from falling on your
feet, keeping the height always three feet and then deposit this weight on another three foot high
table, the physical concept of work would indicate that the force exerted by your arms did no work
during this project even though the muscles in your hands and arms would likely be very tired. The
reason for such an unusual definition is that even though your arms exerted considerable force on
the weight, enough to keep it from falling, the direction of motion was at right angles to the force
they exerted. The only part of a force which does work in the sense of physics is the component
of the force in the direction of motion (This is made more precise below.). The work is defined to
be the magnitude of the component of this force times the distance over which it acts in the case
where this component of force points in the direction of motion and (−1) times the magnitude of
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this component times the distance in case the force tends to impede the motion. Thus the work
done by a force on an object as the object moves from one point to another is a measure of the
extent to which the force contributes to the motion. This is illustrated in the following picture in
the case where the given force contributes to the motion.

✒

✿
❖ F

F||

F⊥
p2

p1

θ

In this picture the force, F is applied to an object which moves on the straight line from p1 to p2.
There are two vectors shown, F|| and F⊥ and the picture is intended to indicate that when you add
these two vectors you get F while F|| acts in the direction of motion and F⊥ acts perpendicular to
the direction of motion. Only F|| contributes to the work done by F on the object as it moves from
p1 to p2. F|| is called the component of the force in the direction of motion. From trigonometry,
you see the magnitude of F|| should equal |F| |cos θ| . Thus, since F|| points in the direction of the
vector from p1 to p2, the total work done should equal

|F|
∣∣−−−→p1p2

∣∣ cos θ = |F| |p2 − p1| cos θ

If the included angle had been obtuse, then the work done by the force, F on the object would have
been negative because in this case, the force tends to impede the motion from p1 to p2 but in this
case, cos θ would also be negative and so it is still the case that the work done would be given by
the above formula. Thus from the geometric description of the dot product given above, the work
equals

|F| |p2 − p1| cos θ = F· (p2−p1) .

This explains the following definition.

Definition 3.2.7 Let F be a force acting on an object which moves from the point p1 to the point
p2. Then the work done on the object by the given force equals F· (p2 − p1) .

The concept of writing a given vector F in terms of two vectors, one which is parallel to a
given vector D and the other which is perpendicular can also be explained with no reliance on
trigonometry, completely in terms of the algebraic properties of the dot product. As before, this is
mathematically more significant than any approach involving geometry or trigonometry because it
extends to more interesting situations. This is done next.

Theorem 3.2.8 Let F and D be nonzero vectors. Then there exist unique vectors F|| and F⊥ such
that

F = F|| + F⊥ (3.13)

where F|| is a scalar multiple of D, also referred to as

projD (F) ,

and F⊥ ·D = 0. The vector projD (F) is called the projection of F onto D.

Proof: Suppose (3.13) and F|| = αD. Taking the dot product of both sides with D and using
F⊥ ·D = 0, this yields

F ·D = α |D|2

which requires α = F ·D/ |D|2 . Thus there can be no more than one vector F||. It follows F⊥ must
equal F− F||. This verifies there can be no more than one choice for both F|| and F⊥.
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Now let

F|| ≡
F ·D
|D|2

D

and let

F⊥ = F− F|| = F−F ·D
|D|2

D

Then F|| = α D where α = F·D
|D|2 . It only remains to verify F⊥ ·D = 0. But

F⊥ ·D = F ·D−F ·D
|D|2

D ·D

= F ·D− F ·D = 0.

�

Example 3.2.9 Let F = 2i+7j − 3k Newtons. Find the work done by this force in moving from
the point (1, 2, 3) to the point (−9,−3, 4) along the straight line segment joining these points where
distances are measured in meters.

According to the definition, this work is

(2i+7j− 3k) · (−10i− 5j+ k) = −20 + (−35) + (−3)

= −58 Newton meters.

Note that if the force had been given in pounds and the distance had been given in feet, the
units on the work would have been foot pounds. In general, work has units equal to units of a force
times units of a length. Instead of writing Newton meter, people write joule because a joule is by
definition a Newton meter. That word is pronounced “jewel” and it is the unit of work in the metric
system of units. Also be sure you observe that the work done by the force can be negative as in
the above example. In fact, work can be either positive, negative, or zero. You just have to do the
computations to find out.

Example 3.2.10 Find proju (v) if u = 2i+ 3j− 4k and v = i− 2j+ k.

From the above discussion in Theorem 3.2.8, this is just

1

4 + 9 + 16
(i− 2j+ k) · (2i+ 3j− 4k) (2i+ 3j− 4k)

=
−8

29
(2i+ 3j− 4k) = −16

29
i− 24

29
j+

32

29
k.

Example 3.2.11 Suppose a, and b are vectors and b⊥ = b− proj
a
(b) . What is the magnitude of

b⊥ in terms of the included angle?

|b⊥|2 = (b− proj
a
(b)) · (b− proj

a
(b))

=

(
b−b · a

|a|2
a

)
·
(
b−b · a

|a|2
a

)

= |b|2 − 2
(b · a)2

|a|2
+

(
b · a
|a|2

)2

|a|2

= |b|2
(
1− (b · a)2

|a|2 |b|2

)

= |b|2
(
1− cos2 θ

)
= |b|2 sin2 (θ)
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where θ is the included angle between a and b which is less than π radians. Therefore, taking square
roots,

|b⊥| = |b| sin θ.

3.2.3 The Inner Product And Distance In Cn

It is necessary to give a generalization of the dot product for vectors in Cn. This is often called the
inner product. It reduces to the definition of the dot product in the case the components of the
vector are real.

Definition 3.2.12 Let x,y ∈ Cn. Thus x = (x1, · · · , xn) where each xk ∈ C and a similar formula
holding for y. Then the inner product of these two vectors is defined to be

x · y ≡
∑

j

xjyj ≡ x1y1 + · · ·+ xnyn.

The inner product is often denoted as (x,y) or ⟨x,y⟩ .

Notice how you put the conjugate on the entries of the vector y. It makes no difference if the
vectors happen to be real vectors but with complex vectors you must do it this way. The reason for
this is that when you take the inner product of a vector with itself, you want to get the square of
the length of the vector, a positive number. Placing the conjugate on the components of y in the
above definition assures this will take place. Thus

x · x =
∑

j

xjxj =
∑

j

|xj |2 ≥ 0.

If you didn’t place a conjugate as in the above definition, things wouldn’t work out correctly. For
example,

(1 + i)
2
+ 22 = 4 + 2i

and this is not a positive number.
The following properties of the inner product follow immediately from the definition and you

should verify each of them.

Properties of the inner product:

1. u · v = v · u.

2. If a, b are numbers and u,v, z are vectors then (au+ bv) · z = a (u · z) + b (v · z) .

3. u · u ≥ 0 and it equals 0 if and only if u = 0.

Note this implies (x·αy) = α (x · y) because

(x·αy) = (αy · x) = α (y · x) = α (x · y)

The norm is defined in the usual way.

Definition 3.2.13 For x ∈ Cn,

|x| ≡
(

n∑

k=1

|xk|2
)1/2

= (x · x)1/2

Here is a fundamental inequality called the Cauchy Schwarz inequality which is stated here
in Cn. First here is a simple lemma.
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Lemma 3.2.14 If z ∈ C there exists θ ∈ C such that θz = |z| and |θ| = 1.

Proof: Let θ = 1 if z = 0 and otherwise, let θ =
z

|z| . Recall that for z = x+ iy, z = x− iy and

zz = |z|2.
I will give a proof of this important inequality which depends only on the above list of properties

of the inner product. It will be slightly different than the earlier proof.

Theorem 3.2.15 (Cauchy Schwarz)The following inequality holds for x and y ∈ Cn.

|(x · y)| ≤ (x · x)1/2 (y · y)1/2 (3.14)

Equality holds in this inequality if and only if one vector is a multiple of the other.

Proof: Let θ ∈ C such that |θ| = 1 and

θ (x · y) = |(x · y)|

Consider p (t) ≡
(
x+ θty,x+ tθy

)
where t ∈ R. Then from the above list of properties of the dot

product,

0 ≤ p (t) = (x · x) + tθ (x · y) + tθ (y · x) + t2 (y · y)
= (x · x) + tθ (x · y) + tθ(x · y) + t2 (y · y)
= (x · x) + 2tRe (θ (x · y)) + t2 (y · y)
= (x · x) + 2t |(x · y)|+ t2 (y · y) (3.15)

and this must hold for all t ∈ R. Therefore, if (y · y) = 0 it must be the case that |(x · y)| = 0 also
since otherwise the above inequality would be violated. Therefore, in this case,

|(x · y)| ≤ (x · x)1/2 (y · y)1/2 .

On the other hand, if (y · y) ̸= 0, then p (t) ≥ 0 for all t means the graph of y = p (t) is a parabola
which opens up and it either has exactly one real zero in the case its vertex touches the t axis or it
has no real zeros.

t t

From the quadratic formula this happens exactly when

4 |(x · y)|2 − 4 (x · x) (y · y) ≤ 0

which is equivalent to (3.14).
It is clear from a computation that if one vector is a scalar multiple of the other that equality

holds in (3.14). Conversely, suppose equality does hold. Then this is equivalent to saying 4 |(x · y)|2−
4 (x · x) (y · y) = 0 and so from the quadratic formula, there exists one real zero to p (t) = 0. Call it
t0. Then

p (t0) ≡
((
x+ θt0y

)
·
(
x+ t0θy

))
=
∣∣x+ θty

∣∣2 = 0

and so x = −θt0y. �
Note that I only used part of the above properties of the inner product. It was not necessary to

use the one which says that if (x · x) = 0 then x = 0.
By analogy to the case of Rn, length or magnitude of vectors in Cn can be defined.

Definition 3.2.16 Let z ∈ Cn. Then |z| ≡ (z · z)1/2.
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The conclusions of the following theorem are also called the axioms for a norm.

Theorem 3.2.17 For length defined in Definition 3.2.16, the following hold.

|z| ≥ 0 and |z| = 0 if and only if z = 0 (3.16)

If α is a scalar, |αz| = |α| |z| (3.17)

|z+w| ≤ |z|+ |w| . (3.18)

Proof: The first two claims are left as exercises. To establish the third, you use the same
argument which was used in Rn.

|z+w|2 = (z+w, z+w)

= z · z+w ·w +w · z+ z ·w
= |z|2 + |w|2 + 2Rew · z
≤ |z|2 + |w|2 + 2 |w · z|
≤ |z|2 + |w|2 + 2 |w| |z| = (|z|+ |w|)2 . �

Occasionally, I may refer to the inner product in Cn as the dot product. They are the same thing
for Rn. However, it is convenient to draw a distinction when discussing matrix multiplication a little
later.

3.3 Exercises

1. Use formula (3.11) to verify the Cauchy Schwarz inequality and to show that equality occurs
if and only if one of the vectors is a scalar multiple of the other.

2. For u,v vectors in R3, define the product, u ∗ v ≡ u1v1 +2u2v2 +3u3v3. Show the axioms for
a dot product all hold for this funny product. Prove

|u ∗ v| ≤ (u ∗ u)1/2 (v ∗ v)1/2 .

Hint: Do not try to do this with methods from trigonometry.

3. Find the angle between the vectors 3i− j− k and i+ 4j+ 2k.

4. Find the angle between the vectors i− 2j+ k and i+ 2j− 7k.

5. Find proju (v) where v =(1, 0,−2) and u =(1, 2, 3) .

6. Find proju (v) where v =(1, 2,−2) and u =(1, 0, 3) .

7. Find proj
u
(v) where v =(1, 2,−2, 1) and u =(1, 2, 3, 0) .

8. Does it make sense to speak of proj
0
(v)?

9. If F is a force and D is a vector, show projD (F) = (|F| cos θ)u where u is the unit vector in
the direction of D, u = D/ |D| and θ is the included angle between the two vectors, F and D.
|F| cos θ is sometimes called the component of the force, F in the direction, D.

10. Prove the Cauchy Schwarz inequality in Rn as follows. For u,v vectors, consider

(u− projv u) · (u− projv u) ≥ 0

Now simplify using the axioms of the dot product and then put in the formula for the projection.
Of course this expression equals 0 and you get equality in the Cauchy Schwarz inequality if
and only if u = proj

v
u. What is the geometric meaning of u = proj

v
u?
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11. A boy drags a sled for 100 feet along the ground by pulling on a rope which is 20 degrees from
the horizontal with a force of 40 pounds. How much work does this force do?

12. A girl drags a sled for 200 feet along the ground by pulling on a rope which is 30 degrees from
the horizontal with a force of 20 pounds. How much work does this force do?

13. A large dog drags a sled for 300 feet along the ground by pulling on a rope which is 45 degrees
from the horizontal with a force of 20 pounds. How much work does this force do?

14. How much work in Newton meters does it take to slide a crate 20 meters along a loading dock
by pulling on it with a 200 Newton force at an angle of 30◦ from the horizontal?

15. An object moves 10 meters in the direction of j. There are two forces acting on this object,
F1 = i + j + 2k, and F2 = −5i + 2j−6k. Find the total work done on the object by the two
forces. Hint: You can take the work done by the resultant of the two forces or you can add
the work done by each force. Why?

16. An object moves 10 meters in the direction of j+ i. There are two forces acting on this object,
F1 = i + 2j + 2k, and F2 = 5i + 2j−6k. Find the total work done on the object by the two
forces. Hint: You can take the work done by the resultant of the two forces or you can add
the work done by each force. Why?

17. An object moves 20 meters in the direction of k+ j. There are two forces acting on this object,
F1 = i+ j+2k, and F2 = i+2j−6k. Find the total work done on the object by the two forces.
Hint: You can take the work done by the resultant of the two forces or you can add the work
done by each force.

18. If a,b, c are vectors. Show that (b+ c)⊥ = b⊥ + c⊥ where b⊥ = b− proj
a
(b) .

19. Find (1, 2, 3, 4) · (2, 0, 1, 3) .

20. Show that (a · b) = 1
4

[
|a+ b|2 − |a− b|2

]
.

21. Prove from the axioms of the dot product the parallelogram identity, |a+ b|2 + |a− b|2 =

2 |a|2 + 2 |b|2 .

3.4 The Cross Product

The cross product is the other way of multiplying two vectors in R3. It is very different from the
dot product in many ways. First the geometric meaning is discussed and then a description in
terms of coordinates is given. Both descriptions of the cross product are important. The geometric
description is essential in order to understand the applications to physics and geometry while the
coordinate description is the only way to practically compute the cross product.

Definition 3.4.1 Three vectors, a,b, c form a right handed system if when you extend the fingers
of your right hand along the vector a and close them in the direction of b, the thumb points roughly
in the direction of c.

For an example of a right handed system of vectors, see the following picture.
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②

✙

✍

a

b

c

In this picture the vector c points upwards from the plane determined by the other two vectors.
You should consider how a right hand system would differ from a left hand system. Try using your
left hand and you will see that the vector c would need to point in the opposite direction as it would
for a right hand system.

From now on, the vectors, i, j,k will always form a right handed system. To repeat, if you extend
the fingers of your right hand along i and close them in the direction j, the thumb points in the
direction of k.

✲

✻

✠

k

i

j

The following is the geometric description of the cross product. It gives both the direction and
the magnitude and therefore specifies the vector.

Definition 3.4.2 Let a and b be two vectors in R3. Then a× b is defined by the following two
rules.

1. |a× b| = |a| |b| sin θ where θ is the included angle.

2. a× b · a = 0, a× b · b = 0, and a,b, a× b forms a right hand system.

Note that |a× b| is the area of the parallelogram determined by a and b.

✸

✲

b

aθ

|b|sin(θ)
✙

The cross product satisfies the following properties.

a× b = − (b× a) , a× a = 0, (3.19)

For α a scalar,
(αa)×b = α (a× b) = a× (αb) , (3.20)

For a,b, and c vectors, one obtains the distributive laws,

a× (b+ c) = a× b+ a× c, (3.21)

(b+ c)× a = b× a+ c× a. (3.22)
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Formula (3.19) follows immediately from the definition. The vectors a× b and b× a have the
same magnitude, |a| |b| sin θ, and an application of the right hand rule shows they have opposite
direction. Formula (3.20) is also fairly clear. If α is a nonnegative scalar, the direction of (αa)×b

is the same as the direction of a× b,α (a× b) and a× (αb) while the magnitude is just α times the
magnitude of a× b which is the same as the magnitude of α (a× b) and a× (αb) . Using this yields
equality in (3.20). In the case where α < 0, everything works the same way except the vectors are all
pointing in the opposite direction and you must multiply by |α| when comparing their magnitudes.
The distributive laws are much harder to establish but the second follows from the first quite easily.
Thus, assuming the first, and using (3.19),

(b+ c)× a = −a× (b+ c) = − (a× b+ a× c)

= b× a+ c× a.

A proof of the distributive law is given in a later section for those who are interested.
Now from the definition of the cross product,

i× j = k j× i = −k

k× i = j i× k = −j

j× k = i k× j = −i

With this information, the following gives the coordinate description of the cross product.

Proposition 3.4.3 Let a = a1i+ a2j+ a3k and b = b1i+ b2j+ b3k be two vectors. Then

a× b = (a2b3 − a3b2) i+(a3b1 − a1b3) j+

+ (a1b2 − a2b1)k. (3.23)

Proof: From the above table and the properties of the cross product listed,

(a1i+ a2j+ a3k)× (b1i+ b2j+ b3k) =

a1b2i× j+ a1b3i× k+ a2b1j× i+ a2b3j× k+

+a3b1k× i+ a3b2k× j

= a1b2k− a1b3j− a2b1k+ a2b3i+ a3b1j− a3b2i

= (a2b3 − a3b2) i+(a3b1 − a1b3) j+(a1b2 − a2b1)k (3.24)

�

It is probably impossible for most people to remember (3.23). Fortunately, there is a somewhat
easier way to remember it. Define the determinant of a 2× 2 matrix as follows

∣∣∣∣
a b
c d

∣∣∣∣ ≡ ad− bc

Then

a× b =

∣∣∣∣∣∣

i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
(3.25)

where you expand the determinant along the top row. This yields

i (−1)
1+1

∣∣∣∣
a2 a3
b2 b3

∣∣∣∣+ j (−1)
2+1

∣∣∣∣
a1 a3
b1 b3

∣∣∣∣+ k (−1)
3+1

∣∣∣∣
a1 a2
b1 b2

∣∣∣∣

= i

∣∣∣∣
a2 a3
b2 b3

∣∣∣∣− j

∣∣∣∣
a1 a3
b1 b3

∣∣∣∣+ k

∣∣∣∣
a1 a2
b1 b2

∣∣∣∣
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Note that to get the scalar which multiplies i you take the determinant of what is left after deleting
the first row and the first column and multiply by (−1)

1+1
because i is in the first row and the first

column. Then you do the same thing for the j and k. In the case of the j there is a minus sign
because j is in the first row and the second column and so(−1)

1+2
= −1 while the k is multiplied

by (−1)
3+1

= 1. The above equals

(a2b3 − a3b2) i− (a1b3 − a3b1) j+(a1b2 − a2b1)k (3.26)

which is the same as (3.24). There will be much more presented on determinants later. For now,
consider this an introduction if you have not seen this topic.

Example 3.4.4 Find (i− j+ 2k)× (3i− 2j+ k) .

Use (3.25) to compute this.

∣∣∣∣∣∣

i j k

1 −1 2
3 −2 1

∣∣∣∣∣∣
=

∣∣∣∣
−1 2
−2 1

∣∣∣∣ i−
∣∣∣∣
1 2
3 1

∣∣∣∣ j+
∣∣∣∣
1 −1
3 −2

∣∣∣∣k = 3i+ 5j+ k.

Example 3.4.5 Find the area of the parallelogram determined by the vectors,

(i− j+ 2k) , (3i− 2j+ k) .

These are the same two vectors in Example 3.4.4.

From Example 3.4.4 and the geometric description of the cross product, the area is just the norm
of the vector obtained in Example 3.4.4. Thus the area is

√
9 + 25 + 1 =

√
35.

Example 3.4.6 Find the area of the triangle determined by (1, 2, 3) , (0, 2, 5) , (5, 1, 2) .

This triangle is obtained by connecting the three points with lines. Picking (1, 2, 3) as a starting
point, there are two displacement vectors, (−1, 0, 2) and (4,−1,−1) such that the given vector added
to these displacement vectors gives the other two vectors. The area of the triangle is half the area of
the parallelogram determined by (−1, 0, 2) and (4,−1,−1) . Thus (−1, 0, 2)× (4,−1,−1) = (2, 7, 1)
and so the area of the triangle is 1

2

√
4 + 49 + 1 = 3

2

√
6.

Observation 3.4.7 In general, if you have three points (vectors) in R3,P,Q,R the area of the
triangle is given by

1

2
|(Q−P)× (R−P)| .

✲

✣

P

Q

R

3.4.1 The Distributive Law For The Cross Product

This section gives a proof for (3.21), a fairly difficult topic. It is included here for the interested
student. If you are satisfied with taking the distributive law on faith, it is not necessary to read this
section. The proof given here is quite clever and follows the one given in [3]. Another approach,
based on volumes of parallelepipeds is found in [14] and is discussed a little later.

Lemma 3.4.8 Let b and c be two vectors. Then b× c = b× c⊥ where c||+c⊥ = c and c⊥ ·b = 0.
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Proof: Consider the following picture.

✲
b

✒
θ

c✻c⊥

Now c⊥ = c− c· b

|b|
b

|b| and so c⊥ is in the plane determined by c and b. Therefore, from the

geometric definition of the cross product, b× c and b× c⊥ have the same direction. Now, referring
to the picture,

|b× c⊥| = |b| |c⊥| = |b| |c| sin θ = |b× c| .
Therefore, b× c and b× c⊥ also have the same magnitude and so they are the same vector. �

With this, the proof of the distributive law is in the following theorem.

Theorem 3.4.9 Let a,b, and c be vectors in R3. Then

a× (b+ c) = a× b+ a× c (3.27)

Proof: Suppose first that a · b = a · c = 0. Now imagine a is a vector coming out of the page
and let b, c and b+ c be as shown in the following picture.

✲
b

✒
c ✶

b+ c

✻
a× b

▼
a× (b+ c)

■a× c

Then a× b,a× (b+ c) , and a× c are each vectors in the same plane, perpendicular to a as
shown. Thus a× c · c = 0,a× (b+ c) · (b+ c) = 0, and a× b · b = 0. This implies that to get
a× b you move counterclockwise through an angle of π/2 radians from the vector b. Similar
relationships exist between the vectors a× (b+ c) and b+ c and the vectors a× c and c. Thus the
angle between a× b and a× (b+ c) is the same as the angle between b+ c and b and the angle
between a× c and a× (b+ c) is the same as the angle between c and b+ c. In addition to this,
since a is perpendicular to these vectors,

|a× b| = |a| |b| , |a× (b+ c)| = |a| |b+ c| , and
|a× c| = |a| |c| .

Therefore,
|a× (b+ c)|

|b+ c| =
|a× c|
|c| =

|a× b|
|b| = |a|

and so
|a× (b+ c)|

|a× c| =
|b+ c|
|c| ,

|a× (b+ c)|
|a× b| =

|b+ c|
|b|

showing the triangles making up the parallelogram on the right and the four sided figure on the left
in the above picture are similar. It follows the four sided figure on the left is in fact a parallelogram
and this implies the diagonal is the vector sum of the vectors on the sides, yielding (3.27).

Now suppose it is not necessarily the case that a · b = a · c = 0. Then write b = b|| + b⊥ where
b⊥ · a = 0. Similarly c = c|| + c⊥. By the above lemma and what was just shown,

a× (b+ c) = a× (b+ c)⊥ = a× (b⊥ + c⊥)

= a× b⊥ + a× c⊥ = a× b+ a× c. �

The result of Problem 18 of the exercises 3.3 is used to go from the first to the second line.
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3.4.2 The Box Product

Definition 3.4.10 A parallelepiped determined by the three vectors, a,b, and c consists of

{ra+sb+ tc : r, s, t ∈ [0, 1]} .

That is, if you pick three numbers, r, s, and t each in [0, 1] and form ra+sb+ tc, then the collection
of all such points is what is meant by the parallelepiped determined by these three vectors.

The following is a picture of such a thing.

✲

✣

✸

a
b

c

✻
a× b

θ

You notice the area of the base of the parallelepiped, the parallelogram determined by the vectors,
a and b has area equal to |a× b| while the altitude of the parallelepiped is |c| cos θ where θ is the
angle shown in the picture between c and a× b. Therefore, the volume of this parallelepiped is the
area of the base times the altitude which is just

|a× b| |c| cos θ = a× b · c.

This expression is known as the box product and is sometimes written as [a,b, c] . You should con-
sider what happens if you interchange the b with the c or the a with the c. You can see geometrically
from drawing pictures that this merely introduces a minus sign. In any case the box product of three
vectors always equals either the volume of the parallelepiped determined by the three vectors or else
minus this volume.

Example 3.4.11 Find the volume of the parallelepiped determined by the vectors, i + 2j − 5k, i +
3j− 6k,3i+ 2j+ 3k.

According to the above discussion, pick any two of these, take the cross product and then take
the dot product of this with the third of these vectors. The result will be either the desired volume
or minus the desired volume.

(i+ 2j− 5k)× (i+ 3j− 6k) =

∣∣∣∣∣∣

i j k

1 2 −5
1 3 −6

∣∣∣∣∣∣
= 3i+ j+ k

Now take the dot product of this vector with the third which yields

(3i+ j+ k) · (3i+ 2j+ 3k) = 9 + 2 + 3 = 14.

This shows the volume of this parallelepiped is 14 cubic units.
There is a fundamental observation which comes directly from the geometric definitions of the

cross product and the dot product.

Lemma 3.4.12 Let a,b, and c be vectors. Then (a× b) ·c = a· (b× c) .

Proof: This follows from observing that either (a× b) ·c and a· (b× c) both give the volume of
the parallelepiped or they both give −1 times the volume. �

Notation 3.4.13 The box product a× b · c = a · b× c is denoted more compactly as [a,b, c].
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3.4.3 A Proof Of The Distributive Law

Here is another proof of the distributive law for the cross product. Let x be a vector. From the
above observation,

x · a× (b+ c) = (x× a) · (b+ c)

= (x× a) · b+(x× a) · c
= x · a× b+ x · a× c

= x· (a× b+ a× c) .

Therefore,
x· [a× (b+ c)− (a× b+ a× c)] = 0

for all x. In particular, this holds for x = a× (b+ c) − (a× b+ a× c) showing that a× (b+ c) =
a× b+ a× c and this proves the distributive law for the cross product another way.

Observation 3.4.14 Suppose you have three vectors, u =(a, b, c) ,v =(d, e, f) , and w = (g, h, i) .
Then u · v ×w is given by the following.

u · v ×w = (a, b, c) ·

∣∣∣∣∣∣

i j k

d e f
g h i

∣∣∣∣∣∣

= a

∣∣∣∣
e f
h i

∣∣∣∣− b

∣∣∣∣
d f
g i

∣∣∣∣+ c

∣∣∣∣
d e
g h

∣∣∣∣

≡ det




a b c
d e f
g h i


 .

The message is that to take the box product, you can simply take the determinant of the matrix which
results by letting the rows be the rectangular components of the given vectors in the order in which
they occur in the box product. More will be presented on determinants later.

3.5 The Vector Identity Machine

In practice, you often have to deal with combinations of several cross products mixed in with dot
products. It is extremely useful to have a technique which will allow you to discover vector identities
and simplify expressions involving cross and dot products in three dimensions. This involves two
special symbols, δij and εijk which are very useful in dealing with vector identities. To begin with,
here is the definition of these symbols.

Definition 3.5.1 The symbol δij , called the Kronecker delta symbol is defined as follows.

δij ≡
{

1 if i = j
0 if i ̸= j

.

With the Kronecker symbol i and j can equal any integer in {1, 2, · · · , n} for any n ∈ N.

Definition 3.5.2 For i, j, and k integers in the set, {1, 2, 3} , εijk is defined as follows.

εijk ≡





1 if (i, j, k) = (1, 2, 3) , (2, 3, 1) , or (3, 1, 2)
−1 if (i, j, k) = (2, 1, 3) , (1, 3, 2) , or (3, 2, 1)
0 if there are any repeated integers

.

The subscripts ijk and ij in the above are called indices. A single one is called an index. This
symbol εijk is also called the permutation symbol.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



3.5. THE VECTOR IDENTITY MACHINE 55

The way to think of εijk is that ε123 = 1 and if you switch any two of the numbers in the list
i, j, k, it changes the sign. Thus εijk = −εjik and εijk = −εkji etc. You should check that this
rule reduces to the above definition. For example, it immediately implies that if there is a repeated
index, the answer is zero. This follows because εiij = −εiij and so εiij = 0.

It is useful to use the Einstein summation convention when dealing with these symbols. Simply
stated, the convention is that you sum over the repeated index. Thus aibi means

∑
i aibi. Also,

δijxj means
∑

j δijxj = xi. Thus δijxj = xi, δii = 3. When you use this convention, there is one
very important thing to never forget. It is this: Never have an index be repeated more than

once. Thus aibi is all right but aiibi is not. The reason for this is that you end up getting confused
about what is meant. If you want to write

∑
i aibici it is best to simply use the summation notation.

There is a very important reduction identity connecting these two symbols.

Lemma 3.5.3 The following holds.

εijkεirs = (δjrδks − δkrδjs) .

Proof: If {j, k} ≠ {r, s} then every term in the sum on the left must have either εijk or εirs
contains a repeated index. Therefore, the left side equals zero. The right side also equals zero in
this case. To see this, note that if the two sets are not equal, then there is one of the indices in one
of the sets which is not in the other set. For example, it could be that j is not equal to either r or
s. Then the right side equals zero.

Therefore, it can be assumed {j, k} = {r, s} . If i = r and j = s for s ̸= r, then there is exactly
one term in the sum on the left and it equals 1. The right also reduces to 1 in this case. If i = s
and j = r, there is exactly one term in the sum on the left which is nonzero and it must equal −1.
The right side also reduces to −1 in this case. If there is a repeated index in {j, k} , then every
term in the sum on the left equals zero. The right also reduces to zero in this case because then
j = k = r = s and so the right side becomes (1) (1)− (−1) (−1) = 0. �

Proposition 3.5.4 Let u,v be vectors in Rn where the Cartesian coordinates of u are (u1, · · · , un)
and the Cartesian coordinates of v are (v1, · · · , vn). Then u · v = uivi. If u,v are vectors in R3,
then

(u× v)i = εijkujvk.

Also, δikak = ai.

Proof: The first claim is obvious from the definition of the dot product. The second is verified
by simply checking that it works. For example,

u× v ≡

∣∣∣∣∣∣

i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣

and so
(u× v)1 = (u2v3 − u3v2) .

From the above formula in the proposition,

ε1jkujvk ≡ u2v3 − u3v2,

the same thing. The cases for (u× v)2 and (u× v)3 are verified similarly. The last claim follows
directly from the definition. �

With this notation, you can easily discover vector identities and simplify expressions which
involve the cross product.

Example 3.5.5 Discover a formula which simplifies (u× v) · (z×w) , u,v ∈ R3.
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From the above description of the cross product and dot product, along with the reduction
identity,

(u× v) · (z×w) =

εijkujvkεirszrws = (δjrδks − δjsδkr)ujvkzrws

= ujvkzjwk − ujvkzkwj

= (u · z) (v ·w)− (u ·w) (v · z)

Example 3.5.6 Simplify u× (u× v) .

The ith component is

εijkuj (u× v)k = εijkujεkrsurvs = εkijεkrsujurvs

= (δirδjs − δjrδis)ujurvs

= ujuivj − ujujvi

= (u · v)ui − |u|2 vi

Hence
u× (u× v) = (u · v)u− |u|2 v

because the ith components of the two sides are equal for any i.

3.6 Exercises

1. Show that if a× u = 0 for all unit vectors, u, then a = 0.

2. Find the area of the triangle determined by the three points, (1, 2, 3) , (4, 2, 0) and (−3, 2, 1) .

3. Find the area of the triangle determined by the three points, (1, 0, 3) , (4, 1, 0) and (−3, 1, 1) .

4. Find the area of the triangle determined by the three points, (1, 2, 3) , (2, 3, 4) and (3, 4, 5) .
Did something interesting happen here? What does it mean geometrically?

5. Find the area of the parallelogram determined by the vectors, (1, 2, 3), (3,−2, 1) .

6. Find the area of the parallelogram determined by the vectors, (1, 0, 3), (4,−2, 1) .

7. Find the volume of the parallelepiped determined by the vectors, i−7j−5k, i−2j−6k,3i+2j+3k.

8. Suppose a,b, and c are three vectors whose components are all integers. Can you conclude the
volume of the parallelepiped determined from these three vectors will always be an integer?

9. What does it mean geometrically if the box product of three vectors gives zero?

10. Using Problem 9, find an equation of a plane containing the two position vectors, a and b

and the point 0. Hint: If (x, y, z) is a point on this plane the volume of the parallelepiped
determined by (x, y, z) and the vectors a,b equals 0.

11. Using the notion of the box product yielding either plus or minus the volume of the paral-
lelepiped determined by the given three vectors, show that

(a× b) ·c = a· (b× c)

In other words, the dot and the cross can be switched as long as the order of the vectors
remains the same. Hint: There are two ways to do this, by the coordinate description of the
dot and cross product and by geometric reasoning. It is better if you use geometric reasoning.
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12. Is a× (b× c) = (a× b)×c? What is the meaning of a× b× c? Explain. Hint: Try (i× j)×j.

13. Discover a vector identity for (u× v)×w and one for u× (v ×w).

14. Discover a vector identity for (u× v)× (z×w).

15. Simplify (u× v) · (v ×w)× (w × z) .

16. Simplify |u× v|2 + (u · v)2 − |u|2 |v|2 .

17. For u,v,w functions of t, show the product rules

(u× v)
′

= u′ × v + u× v′

(u · v)′ = u′ · v + u · v′

18. If u is a function of t, and the magnitude |u (t)| is a constant, show from the above problem
that the velocity u′ is perpendicular to u.

19. When you have a rotating rigid body with angular velocity vector Ω, then the velocity vector
v ≡ u′ is given by

v = Ω× u

where u is a position vector. The acceleration is the derivative of the velocity. Show that if Ω
is a constant vector, then the acceleration vector a = v′ is given by the formula

a = Ω× (Ω× u) .

Now simplify the expression. It turns out this is centripetal acceleration.

20. Verify directly that the coordinate description of the cross product, a× b has the property
that it is perpendicular to both a and b. Then show by direct computation that this coordinate
description satisfies

|a× b|2 = |a|2 |b|2 − (a · b)2

= |a|2 |b|2
(
1− cos2 (θ)

)

where θ is the angle included between the two vectors. Explain why |a× b| has the correct
magnitude. All that is missing is the material about the right hand rule. Verify directly from
the coordinate description of the cross product that the right thing happens with regards to
the vectors i, j,k. Next verify that the distributive law holds for the coordinate description of
the cross product. This gives another way to approach the cross product. First define it in
terms of coordinates and then get the geometric properties from this. However, this approach
does not yield the right hand rule property very easily.
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Systems Of Equations

4.1 Systems Of Equations, Geometry

As you know, equations like 2x+3y = 6 can be graphed as straight lines in R2. To find the solution
to two such equations, you could graph the two straight lines and the ordered pairs identifying the
point (or points) of intersection would give the x and y values of the solution to the two equations
because such an ordered pair satisfies both equations. The following picture illustrates what can
occur with two equations involving two variables.

x

y

one solution

x

y

two parallel lines
no solutions

x

y

infinitely
many solutions

In the first example of the above picture, there is a unique point of intersection. In the second,
there are no points of intersection. The other thing which can occur is that the two lines are really
the same line. For example, x + y = 1 and 2x + 2y = 2 are relations which when graphed yield
the same line. In this case there are infinitely many points in the simultaneous solution of these
two equations, every ordered pair which is on the graph of the line. It is always this way when
considering linear systems of equations. There is either no solution, exactly one or infinitely many
although the reasons for this are not completely comprehended by considering a simple picture in
two dimensions, R2.

Example 4.1.1 Find the solution to the system x+ y = 3, y − x = 5.

You can verify the solution is (x, y) = (−1, 4) . You can see this geometrically by graphing the
equations of the two lines. If you do so correctly, you should obtain a graph which looks something
like the following in which the point of intersection represents the solution of the two equations.

x

(x, y) = (−1, 4) ✲

Example 4.1.2 You can also imagine other situations such as the case of three intersecting lines
having no common point of intersection or three intersecting lines which do intersect at a single
point as illustrated in the following picture.

59
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x

y

x

y

In the case of the first picture above, there would be no solution to the three equations whose
graphs are the given lines. In the case of the second picture there is a solution to the three equations
whose graphs are the given lines.

The points, (x, y, z) satisfying an equation in three variables like 2x+ 4y − 5z = 8 form a plane
1 and geometrically, when you solve systems of equations involving three variables, you are taking
intersections of planes. Consider the following picture involving two planes.

Notice how these two planes intersect in a line. It could also happen the two planes could fail to
intersect.

Now imagine a third plane. One thing that could happen is this third plane could have an
intersection with one of the first planes which results in a line which fails to intersect the first line
as illustrated in the following picture.

✠
New Plane

Thus there is no point which lies in all three planes. The picture illustrates the situation in
which the line of intersection of the new plane with one of the original planes forms a line parallel
to the line of intersection of the first two planes. However, in three dimensions, it is possible for
two lines to fail to intersect even though they are not parallel. Such lines are called skew lines.

You might consider whether there exist two skew lines, each of which is the intersection of a pair of
planes selected from a set of exactly three planes such that there is no point of intersection between
the three planes. You can also see that if you tilt one of the planes you could obtain every pair of
planes having a nonempty intersection in a line and yet there may be no point in the intersection of
all three.

It could happen also that the three planes could intersect in a single point as shown in the
following picture.

1Don’t worry about why this is at this time. It is not important. The following discussion is intended to show you

that geometric considerations like this don’t take you anywhere. It is the algebraic procedures which are important

and lead to important applications.
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✠

New Plane

In this case, the three planes have a single point of intersection. The three planes could also
intersect in a line.

Thus in the case of three equations having three variables, the planes determined by these
equations could intersect in a single point, a line, or even fail to intersect at all. You see that
in three dimensions there are many possibilities. If you want to waste some time, you can try to
imagine all the things which could happen but this will not help for more variables than 3 which is
where many of the important applications lie.

Relations like x+ y − 2z + 4w = 8 are often called hyper-planes.2 However, it is impossible to
draw pictures of such things. The only rational and useful way to deal with this subject is through
the use of algebra not art. Mathematics exists partly to free us from having to always draw pictures
in order to draw conclusions.

4.2 Systems Of Equations, Algebraic Procedures

4.2.1 Elementary Operations

Consider the following example.

Example 4.2.1 Find x and y such that

x+ y = 7 and 2x− y = 8. (4.1)

The set of ordered pairs, (x, y) which solve both equations is called the solution set.

You can verify that (x, y) = (5, 2) is a solution to the above system. The interesting question is
this: If you were not given this information to verify, how could you determine the solution? You
can do this by using the following basic operations on the equations, none of which change the set
of solutions of the system of equations.

Definition 4.2.2 Elementary operations are those operations consisting of the following.

2The evocative semi word, “hyper” conveys absolutely no meaning but is traditional usage which makes the

terminology sound more impressive than something like long wide flat thing.Later we will discuss some terms which

are not just evocative but yield real understanding.
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1. Interchange the order in which the equations are listed.

2. Multiply any equation by a nonzero number.

3. Replace any equation with itself added to a multiple of another equation.

Example 4.2.3 To illustrate the third of these operations on this particular system, consider the
following.

x+ y = 7
2x− y = 8

The system has the same solution set as the system

x+ y = 7
−3y = −6

.

To obtain the second system, take the second equation of the first system and add -2 times the first
equation to obtain

−3y = −6.

Now, this clearly shows that y = 2 and so it follows from the other equation that x+ 2 = 7 and so
x = 5.

Of course a linear system may involve many equations and many variables. The solution set is
still the collection of solutions to the equations. In every case, the above operations of Definition
4.2.2 do not change the set of solutions to the system of linear equations.

Theorem 4.2.4 Suppose you have two equations, involving the variables,

(x1, · · · , xn)
E1 = f1, E2 = f2 (4.2)

where E1 and E2 are expressions involving the variables and f1 and f2 are constants. (In the above
example there are only two variables, x and y and E1 = x+ y while E2 = 2x− y.) Then the system
E1 = f1, E2 = f2 has the same solution set as

E1 = f1, E2 + aE1 = f2 + af1. (4.3)

Also the system E1 = f1, E2 = f2 has the same solutions as the system, E2 = f2, E1 = f1. The
system E1 = f1, E2 = f2 has the same solution as the system E1 = f1, aE2 = af2 provided a ̸= 0.

Proof: If (x1, · · · , xn) solves E1 = f1, E2 = f2 then it solves the first equation in E1 = f1, E2 +
aE1 = f2 + af1. Also, it satisfies aE1 = af1 and so, since it also solves E2 = f2 it must solve
E2+aE1 = f2+af1. Therefore, if (x1, · · · , xn) solves E1 = f1, E2 = f2 it must also solve E2+aE1 =
f2+af1. On the other hand, if it solves the system E1 = f1 and E2+aE1 = f2+af1, then aE1 = af1
and so you can subtract these equal quantities from both sides of E2 + aE1 = f2 + af1 to obtain
E2 = f2 showing that it satisfies E1 = f1, E2 = f2.

The second assertion of the theorem which says that the system E1 = f1, E2 = f2 has the same
solution as the system, E2 = f2, E1 = f1 is seen to be true because it involves nothing more than
listing the two equations in a different order. They are the same equations.

The third assertion of the theorem which says E1 = f1, E2 = f2 has the same solution as the
system E1 = f1, aE2 = af2 provided a ̸= 0 is verified as follows: If (x1, · · · , xn) is a solution of
E1 = f1, E2 = f2, then it is a solution to E1 = f1, aE2 = af2 because the second system only
involves multiplying the equation, E2 = f2 by a. If (x1, · · · , xn) is a solution of E1 = f1, aE2 = af2,
then upon multiplying aE2 = af2 by the number 1/a, you find that E2 = f2. �

Stated simply, the above theorem shows that the elementary operations do not change the solu-
tion set of a system of equations.

Here is an example in which there are three equations and three variables. You want to find
values for x, y, z such that each of the given equations are satisfied when these values are plugged in
to the equations.
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Example 4.2.5 Find the solutions to the system,

x+ 3y + 6z = 25
2x+ 7y + 14z = 58

2y + 5z = 19
(4.4)

To solve this system replace the second equation by (−2) times the first equation added to the
second. This yields the system

x+ 3y + 6z = 25
y + 2z = 8
2y + 5z = 19

(4.5)

Now take (−2) times the second and add to the third. More precisely, replace the third equation
with (−2) times the second added to the third. This yields the system

x+ 3y + 6z = 25
y + 2z = 8
z = 3

(4.6)

At this point, you can tell what the solution is. This system has the same solution as the original
system and in the above, z = 3. Then using this in the second equation, it follows y + 6 = 8 and so
y = 2. Now using this in the top equation yields x+6+18 = 25 and so x = 1. This process is called
back substitution.

Alternatively, in (4.6) you could have continued as follows. Add (−2) times the bottom equation
to the middle and then add (−6) times the bottom to the top. This yields

x+ 3y = 7
y = 2
z = 3

Now add (−3) times the second to the top. This yields

x = 1
y = 2
z = 3

,

a system which has the same solution set as the original system. This avoided back substitution and
led to the same solution set.

4.2.2 Gauss Elimination

A less cumbersome way to represent a linear system is to write it as an augmented matrix. For
example the linear system, (4.4) can be written as




1 3 6 | 25
2 7 14 | 58
0 2 5 | 19


 .

It has exactly the same information as the original system but here it is understood there is an

x column,




1
2
0


 , a y column,




3
7
2


 and a z column,




6
14
5


 . The rows correspond to the

equations in the system. Thus the top row in the augmented matrix corresponds to the equation,

x+ 3y + 6z = 25.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



64 SYSTEMS OF EQUATIONS

Now when you replace an equation with a multiple of another equation added to itself, you are just
taking a row of this augmented matrix and replacing it with a multiple of another row added to
it. Thus the first step in solving (4.4) would be to take (−2) times the first row of the augmented
matrix above and add it to the second row,




1 3 6 | 25
0 1 2 | 8
0 2 5 | 19


 .

Note how this corresponds to (4.5). Next take (−2) times the second row and add to the third,




1 3 6 | 25
0 1 2 | 8
0 0 1 | 3




This augmented matrix corresponds to the system

x+ 3y + 6z = 25
y + 2z = 8
z = 3

which is the same as (4.6). By back substitution you obtain the solution x = 1, y = 6, and z = 3.
In general a linear system is of the form

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

, (4.7)

where the xi are variables and the aij and bi are constants. This system can be represented by the
augmented matrix 


a11 · · · a1n | b1
...

... |
...

am1 · · · amn | bm


 . (4.8)

Changes to the system of equations in (4.7) as a result of an elementary operations translate into
changes of the augmented matrix resulting from a row operation. Note that Theorem 4.2.4 implies
that the row operations deliver an augmented matrix for a system of equations which has the same
solution set as the original system.

Definition 4.2.6 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

Gauss elimination is a systematic procedure to simplify an augmented matrix to a reduced
form. In the following definition, the term “leading entry” refers to the first nonzero entry of a
row when scanning the row from left to right.

Definition 4.2.7 An augmented matrix is in echelon form if

1. All nonzero rows are above any rows of zeros.

2. Each leading entry of a row is in a column to the right of the leading entries of any rows above
it.
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Definition 4.2.8 An augmented matrix is in row reduced echelon form if

1. All nonzero rows are above any rows of zeros.

2. Each leading entry of a row is in a column to the right of the leading entries of any rows above
it.

3. All entries in a column above and below a leading entry are zero.

4. Each leading entry is a 1, the only nonzero entry in its column.

Example 4.2.9 Here are some augmented matrices which are in row reduced echelon form.




1 0 0 5 8 | 0
0 0 1 2 7 | 0
0 0 0 0 0 | 1
0 0 0 0 0 | 0


 ,




1 0 0 | 0
0 1 0 | 0
0 0 1 | 0
0 0 0 | 1
0 0 0 | 0



.

Example 4.2.10 Here are augmented matrices in echelon form which are not in row reduced echelon
form but which are in echelon form.




1 0 6 5 8 | 2
0 0 2 2 7 | 3
0 0 0 0 0 | 1
0 0 0 0 0 | 0


 ,




1 3 5 | 4
0 2 0 | 7
0 0 3 | 0
0 0 0 | 1
0 0 0 | 0




Example 4.2.11 Here are some augmented matrices which are not in echelon form.




0 0 0 | 0
1 2 3 | 3
0 1 0 | 2
0 0 0 | 1
0 0 0 | 0



,




1 2 | 3
2 4 | −6
4 0 | 7


 ,




0 2 3 | 3
1 5 0 | 2
7 5 0 | 1
0 0 1 | 0


 .

Definition 4.2.12 A pivot position in a matrix is the location of a leading entry in an echelon
form resulting from the application of row operations to the matrix. A pivot column is a column
that contains a pivot position.

For example consider the following.

Example 4.2.13 Suppose

A =




1 2 3 | 4
3 2 1 | 6
4 4 4 | 10




Where are the pivot positions and pivot columns?

Replace the second row by −3 times the first added to the second. This yields




1 2 3 | 4
0 −4 −8 | −6
4 4 4 | 10


 .
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This is not in reduced echelon form so replace the bottom row by −4 times the top row added to
the bottom. This yields 


1 2 3 | 4
0 −4 −8 | −6
0 −4 −8 | −6


 .

This is still not in reduced echelon form. Replace the bottom row by −1 times the middle row added
to the bottom. This yields 


1 2 3 | 4
0 −4 −8 | −6
0 0 0 | 0




which is in echelon form, although not in reduced echelon form. Therefore, the pivot positions in
the original matrix are the locations corresponding to the first row and first column and the second
row and second columns as shown in the following:




1 2 3 | 4

3 2 1 | 6
4 4 4 | 10




Thus the pivot columns in the matrix are the first two columns.
The following is the algorithm for obtaining a matrix which is in row reduced echelon form.

Algorithm 4.2.14

This algorithm tells how to start with a matrix and do row operations on it in such a way as to
end up with a matrix in row reduced echelon form.

1. Find the first nonzero column from the left. This is the first pivot column. The position at
the top of the first pivot column is the first pivot position. Switch rows if necessary to place
a nonzero number in the first pivot position.

2. Use row operations to zero out the entries below the first pivot position.

3. Ignore the row containing the most recent pivot position identified and the rows above it.
Repeat steps 1 and 2 to the remaining sub-matrix, the rectangular array of numbers obtained
from the original matrix by deleting the rows you just ignored. Repeat the process until there
are no more rows to modify. The matrix will then be in echelon form.

4. Moving from right to left, use the nonzero elements in the pivot positions to zero out the
elements in the pivot columns which are above the pivots.

5. Divide each nonzero row by the value of the leading entry. The result will be a matrix in row
reduced echelon form.

This row reduction procedure applies to both augmented matrices and non augmented matrices.
There is nothing special about the augmented column with respect to the row reduction procedure.

Example 4.2.15 Here is a matrix.



0 0 2 3 2
0 1 1 4 3
0 0 1 2 2
0 0 0 0 0
0 0 0 2 1




Do row reductions till you obtain a matrix in echelon form. Then complete the process by producing
one in row reduced echelon form.
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The pivot column is the second. Hence the pivot position is the one in the first row and second
column. Switch the first two rows to obtain a nonzero entry in this pivot position.




0 1 1 4 3
0 0 2 3 2
0 0 1 2 2
0 0 0 0 0
0 0 0 2 1




Step two is not necessary because all the entries below the first pivot position in the resulting matrix
are zero. Now ignore the top row and the columns to the left of this first pivot position. Thus you
apply the same operations to the smaller matrix




2 3 2
1 2 2
0 0 0
0 2 1


 .

The next pivot column is the third corresponding to the first in this smaller matrix and the second
pivot position is therefore, the one which is in the second row and third column. In this case it is
not necessary to switch any rows to place a nonzero entry in this position because there is already a
nonzero entry there. Multiply the third row of the original matrix by −2 and then add the second
row to it. This yields 



0 1 1 4 3
0 0 2 3 2
0 0 0 −1 −2
0 0 0 0 0
0 0 0 2 1



.

The next matrix the steps in the algorithm are applied to is



−1 −2
0 0
2 1


 .

The first pivot column is the first column in this case and no switching of rows is necessary because
there is a nonzero entry in the first pivot position. Therefore, the algorithm yields for the next step




0 1 1 4 3
0 0 2 3 2
0 0 0 −1 −2
0 0 0 0 0
0 0 0 0 −3



.

Now the algorithm will be applied to the matrix
(

0
−3

)

There is only one column and it is nonzero so this single column is the pivot column. Therefore, the
algorithm yields the following matrix for the echelon form.




0 1 1 4 3
0 0 2 3 2
0 0 0 −1 −2
0 0 0 0 −3
0 0 0 0 0



.
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To complete placing the matrix in reduced echelon form, multiply the third row by 3 and add −2
times the fourth row to it. This yields




0 1 1 4 3
0 0 2 3 2
0 0 0 −3 0
0 0 0 0 −3
0 0 0 0 0




Next multiply the second row by 3 and take 2 times the fourth row and add to it. Then add the
fourth row to the first. 



0 1 1 4 0
0 0 6 9 0
0 0 0 −3 0
0 0 0 0 −3
0 0 0 0 0



.

Next work on the fourth column in the same way.



0 3 3 0 0
0 0 6 0 0
0 0 0 −3 0
0 0 0 0 −3
0 0 0 0 0




Take −1/2 times the second row and add to the first.




0 3 0 0 0
0 0 6 0 0
0 0 0 −3 0
0 0 0 0 −3
0 0 0 0 0



.

Finally, divide by the value of the leading entries in the nonzero rows.



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



.

The above algorithm is the way a computer would obtain a reduced echelon form for a given
matrix. It is not necessary for you to pretend you are a computer but if you like to do so, the
algorithm described above will work. The main idea is to do row operations in such a way as to end
up with a matrix in echelon form or row reduced echelon form because when this has been done, the
resulting augmented matrix will allow you to describe the solutions to the linear system of equations
in a meaningful way. When you do row operations until you obtain row reduced echelon form, the
process is called the Gauss Jordan method. Otherwise, it is called Gauss elimination.

Example 4.2.16 Give the complete solution to the system of equations, 5x + 10y − 7z = −2,
2x+ 4y − 3z = −1, and 3x+ 6y + 5z = 9.

The augmented matrix for this system is



2 4 −3 | −1
5 10 −7 | −2
3 6 5 | 9



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Multiply the second row by 2, the first row by 5, and then take (−1) times the first row and add to
the second. Then multiply the first row by 1/5. This yields




2 4 −3 | −1
0 0 1 | 1
3 6 5 | 9




Now, combining some row operations, take (−3) times the first row and add this to 2 times the last
row and replace the last row with this. This yields.




2 4 −3 | −1
0 0 1 | 1
0 0 1 | 21


 .

One more row operation, taking (−1) times the second row and adding to the bottom yields.




2 4 −3 | −1
0 0 1 | 1
0 0 0 | 20


 .

This is impossible because the last row indicates the need for a solution to the equation

0x+ 0y + 0z = 20

and there is no such thing because 0 ̸= 20. This shows there is no solution to the three given
equations. When this happens, the system is called inconsistent. In this case it is very easy to
describe the solution set. The system has no solution.

Here is another example based on the use of row operations.

Example 4.2.17 Give the complete solution to the system of equations, 3x−y−5z = 9, y−10z = 0,
and −2x+ y = −6.

The augmented matrix of this system is




3 −1 −5 | 9
0 1 −10 | 0
−2 1 0 | −6




Replace the last row with 2 times the top row added to 3 times the bottom row. This gives




3 −1 −5 | 9
0 1 −10 | 0
0 1 −10 | 0


 .

The entry, 3 in this sequence of row operations is called the pivot. It is used to create zeros in the
other places of the column. Next take −1 times the middle row and add to the bottom. Here the 1
in the second row is the pivot. 


3 −1 −5 | 9
0 1 −10 | 0
0 0 0 | 0




Take the middle row and add to the top and then divide the top row which results by 3.




1 0 −5 | 3
0 1 −10 | 0
0 0 0 | 0


 .
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This is in reduced echelon form. The equations corresponding to this reduced echelon form are
y = 10z and x = 3 + 5z. Apparently z can equal any number. Lets call this number t. 3Therefore,
the solution set of this system is x = 3+ 5t, y = 10t, and z = t where t is completely arbitrary. The
system has an infinite set of solutions which are given in the above simple way. This is what it is
all about, finding the solutions to the system.

There is some terminology connected to this which is useful. Recall how each column corresponds
to a variable in the original system of equations. The variables corresponding to a pivot column are
called basic variables. The other variables are called free variables. In Example 4.2.17 there
was one free variable, z, and two basic variables, x and y. In describing the solution to the system
of equations, the free variables are assigned a parameter. In Example 4.2.17 this parameter was t.
Sometimes there are many free variables and in these cases, you need to use many parameters. Here
is another example.

Example 4.2.18 Find the solution to the system

x+ 2y − z + w = 3
x+ y − z + w = 1
x+ 3y − z + w = 5

The augmented matrix is 


1 2 −1 1 | 3
1 1 −1 1 | 1
1 3 −1 1 | 5


 .

Take −1 times the first row and add to the second. Then take −1 times the first row and add to
the third. This yields 


1 2 −1 1 | 3
0 −1 0 0 | −2
0 1 0 0 | 2




Now add the second row to the bottom row



1 2 −1 1 | 3
0 −1 0 0 | −2
0 0 0 0 | 0


 (4.9)

This matrix is in echelon form and you see the basic variables are x and y while the free variables
are z and w. Assign s to z and t to w. Then the second row yields the equation, y = 2 while the
top equation yields the equation, x+ 2y − s+ t = 3 and so since y = 2, this gives x+ 4− s+ t = 3
showing that x = −1 + s− t, y = 2, z = s, and w = t. It is customary to write this in the form




x
y
z
w


 =




−1 + s− t
2
s
t


 . (4.10)

This is another example of a system which has an infinite solution set but this time the solution
set depends on two parameters, not one. Most people find it less confusing in the case of an infinite
solution set to first place the augmented matrix in row reduced echelon form rather than just echelon
form before seeking to write down the description of the solution. In the above, this means we don’t
stop with the echelon form (4.9). Instead we first place it in reduced echelon form as follows.




1 0 −1 1 | −1
0 1 0 0 | 2
0 0 0 0 | 0


 .

3In this context t is called a parameter.
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Then the solution is y = 2 from the second row and x = −1 + z − w from the first. Thus letting
z = s and w = t, the solution is given in (4.10).

The number of free variables is always equal to the number of different parameters used to
describe the solution. If there are no free variables, then either there is no solution as in the case
where row operations yield an echelon form like




1 2 | 3
0 4 | −2
0 0 | 1




or there is a unique solution as in the case where row operations yield an echelon form like



1 2 2 | 3
0 4 3 | −2
0 0 4 | 1


 .

Also, sometimes there are free variables and no solution as in the following:



1 2 2 | 3
0 4 3 | −2
0 0 0 | 1


 .

There are a lot of cases to consider but it is not necessary to make a major production of this.
Do row operations till you obtain a matrix in echelon form or reduced echelon form and determine
whether there is a solution. If there is, see if there are free variables. In this case, there will be
infinitely many solutions. Find them by assigning different parameters to the free variables and
obtain the solution. If there are no free variables, then there will be a unique solution which is easily
determined once the augmented matrix is in echelon or row reduced echelon form. In every case,
the process yields a straightforward way to describe the solutions to the linear system. As indicated
above, you are probably less likely to become confused if you place the augmented matrix in row
reduced echelon form rather than just echelon form.

In summary,

Definition 4.2.19 A system of linear equations is a list of equations,

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

where aij are numbers, and bj is a number. The above is a system of m equations in the n variables,
x1, x2 · · · , xn. Nothing is said about the relative size of m and n. Written more simply in terms of
summation notation, the above can be written in the form

n∑

j=1

aijxj = fi, i = 1, 2, 3, · · · ,m

It is desired to find (x1, · · · , xn) solving each of the equations listed.

As illustrated above, such a system of linear equations may have a unique solution, no solution,
or infinitely many solutions and these are the only three cases which can occur for any linear system.
Furthermore, you do exactly the same things to solve any linear system. You write the augmented
matrix and do row operations until you get a simpler system in which it is possible to see the solution,
usually obtaining a matrix in echelon or reduced echelon form. All is based on the observation that
the row operations do not change the solution set. You can have more equations than variables,
fewer equations than variables, etc. It doesn’t matter. You always set up the augmented matrix and
go to work on it.
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Definition 4.2.20 A system of linear equations is called consistent if there exists a solution. It
is called inconsistent if there is no solution.

These are reasonable words to describe the situations of having or not having a solution. If you
think of each equation as a condition which must be satisfied by the variables, consistent would
mean there is some choice of variables which can satisfy all the conditions. Inconsistent would mean
there is no choice of the variables which can satisfy each of the conditions.

4.3 Exercises

1. Find the point (x1, y1) which lies on both lines, x+ 3y = 1 and 4x− y = 3.

2. Solve Problem 1 graphically. That is, graph each line and see where they intersect.

3. Find the point of intersection of the two lines 3x+ y = 3 and x+ 2y = 1.

4. Solve Problem 3 graphically. That is, graph each line and see where they intersect.

5. Do the three lines, x+2y = 1, 2x−y = 1, and 4x+3y = 3 have a common point of intersection?
If so, find the point and if not, tell why they don’t have such a common point of intersection.

6. Do the three planes, x + y − 3z = 2, 2x + y + z = 1, and 3x + 2y − 2z = 0 have a common
point of intersection? If so, find one and if not, tell why there is no such point.

7. You have a system of k equations in two variables, k ≥ 2. Explain the geometric significance
of

(a) No solution.

(b) A unique solution.

(c) An infinite number of solutions.

8. Here is an augmented matrix in which ∗ denotes an arbitrary number and � denotes a nonzero
number. Determine whether the given augmented matrix is consistent. If consistent, is the
solution unique? 



� ∗ ∗ ∗ ∗ | ∗
0 � ∗ ∗ 0 | ∗
0 0 � ∗ ∗ | ∗
0 0 0 0 � | ∗




9. Here is an augmented matrix in which ∗ denotes an arbitrary number and � denotes a nonzero
number. Determine whether the given augmented matrix is consistent. If consistent, is the
solution unique? 


� ∗ ∗ | ∗
0 � ∗ | ∗
0 0 � | ∗




10. Here is an augmented matrix in which ∗ denotes an arbitrary number and � denotes a nonzero
number. Determine whether the given augmented matrix is consistent. If consistent, is the
solution unique? 



� ∗ ∗ ∗ ∗ | ∗
0 � 0 ∗ 0 | ∗
0 0 0 � ∗ | ∗
0 0 0 0 � | ∗



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11. Here is an augmented matrix in which ∗ denotes an arbitrary number and � denotes a nonzero
number. Determine whether the given augmented matrix is consistent. If consistent, is the
solution unique? 



� ∗ ∗ ∗ ∗ | ∗
0 � ∗ ∗ 0 | ∗
0 0 0 0 � | 0
0 0 0 0 ∗ | �




12. Suppose a system of equations has fewer equations than variables. Must such a system be
consistent? If so, explain why and if not, give an example which is not consistent.

13. If a system of equations has more equations than variables, can it have a solution? If so, give
an example and if not, tell why not.

14. Find h such that (
2 h | 4
3 6 | 7

)

is the augmented matrix of an inconsistent matrix.

15. Find h such that (
1 h | 3
2 4 | 6

)

is the augmented matrix of a consistent matrix.

16. Find h such that (
1 1 | 4
3 h | 12

)

is the augmented matrix of a consistent matrix.

17. Choose h and k such that the augmented matrix shown has one solution. Then choose h and
k such that the system has no solutions. Finally, choose h and k such that the system has
infinitely many solutions. (

1 h | 2
2 4 | k

)
.

18. Choose h and k such that the augmented matrix shown has one solution. Then choose h and
k such that the system has no solutions. Finally, choose h and k such that the system has
infinitely many solutions. (

1 2 | 2
2 h | k

)
.

19. Determine if the system is consistent. If so, is the solution unique?

x+ 2y + z − w = 2
x− y + z + w = 1
2x+ y − z = 1
4x+ 2y + z = 5

20. Determine if the system is consistent. If so, is the solution unique?

x+ 2y + z − w = 2
x− y + z + w = 0
2x+ y − z = 1
4x+ 2y + z = 3
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21. Find the general solution of the system whose augmented matrix is



1 2 0 | 2
1 3 4 | 2
1 0 2 | 1


 .

22. Find the general solution of the system whose augmented matrix is



1 2 0 | 2
2 0 1 | 1
3 2 1 | 3


 .

23. Find the general solution of the system whose augmented matrix is
(

1 1 0 | 1
1 0 4 | 2

)
.

24. Find the general solution of the system whose augmented matrix is



1 0 2 1 1 | 2
0 1 0 1 2 | 1
1 2 0 0 1 | 3
1 0 1 0 2 | 2


 .

25. Find the general solution of the system whose augmented matrix is



1 0 2 1 1 | 2
0 1 0 1 2 | 1
0 2 0 0 1 | 3
1 −1 2 2 2 | 0


 .

26. Give the complete solution to the system of equations, 7x+14y+15z = 22, 2x+4y+3z = 5,
and 3x+ 6y + 10z = 13.

27. Give the complete solution to the system of equations, 3x − y + 4z = 6, y + 8z = 0, and
−2x+ y = −4.

28. Give the complete solution to the system of equations, 9x−2y+4z = −17, 13x−3y+6z = −25,
and −2x− z = 3.

29. Give the complete solution to the system of equations, 65x+84y+16z = 546, 81x+105y+20z =
682, and 84x+ 110y + 21z = 713.

30. Give the complete solution to the system of equations, 8x+2y+3z = −3, 8x+3y+3z = −1,
and 4x+ y + 3z = −9.

31. Give the complete solution to the system of equations, −8x+2y+5z = 18,−8x+3y+5z = 13,
and −4x+ y + 5z = 19.

32. Give the complete solution to the system of equations, 3x − y − 2z = 3, y − 4z = 0, and
−2x+ y = −2.

33. Give the complete solution to the system of equations, −9x + 15y = 66,−11x + 18y = 79
,−x+ y = 4, and z = 3.

34. Give the complete solution to the system of equations, −19x+8y = −108, −71x+30y = −404,
−2x+ y = −12, 4x+ z = 14.
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35. Consider the system −5x+2y−z = 0 and −5x−2y− z = 0. Both equations equal zero and so
−5x+ 2y − z = −5x− 2y − z which is equivalent to y = 0. Thus x and z can equal anything.
But when x = 1, z = −4, and y = 0 are plugged in to the equations, it doesn’t work. Why?

36. Four times the weight of Gaston is 150 pounds more than the weight of Ichabod. Four times
the weight of Ichabod is 660 pounds less than seventeen times the weight of Gaston. Four
times the weight of Gaston plus the weight of Siegfried equals 290 pounds. Brunhilde would
balance all three of the others. Find the weights of the four sisters.

37. The steady state temperature, u in a plate solves Laplace’s equation, ∆u = 0. One way to
approximate the solution which is often used is to divide the plate into a square mesh and
require the temperature at each node to equal the average of the temperature at the four
adjacent nodes. This procedure is justified by the mean value property of harmonic functions.
In the following picture, the numbers represent the observed temperature at the indicated
nodes. Your task is to find the temperature at the interior nodes, indicated by x, y, z, and w.
One of the equations is z = 1

4 (10 + 0 + w + x).

1010

20

20 x

y

z

w

3030

0

0
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Matrices

5.1 Matrix Arithmetic

5.1.1 Addition And Scalar Multiplication Of Matrices

You have now solved systems of equations by writing them in terms of an augmented matrix and then
doing row operations on this augmented matrix. It turns out such rectangular arrays of numbers
are important from many other different points of view. Numbers are also called scalars. In these
notes numbers will always be either real or complex numbers. I will refer to the set of numbers as
F sometimes when it is not important to worry about whether the number is real or complex. Thus
F can be either the real numbers, R or the complex numbers, C.

A matrix is a rectangular array of numbers. Several of them are referred to as matrices. For
example, here is a matrix. 


1 2 3 4
5 2 8 7
6 −9 1 2




The size or dimension of a matrix is defined as m × n where m is the number of rows and n is
the number of columns. The above matrix is a 3× 4 matrix because there are three rows and four
columns. The first row is (1 2 3 4) , the second row is (5 2 8 7) and so forth. The first column is


1
5
6


 .When specifying the size of a matrix, you always list the number of rows before the number

of columns. Also, you can remember the columns are like columns in a Greek temple. They stand
upright while the rows just lay there like rows made by a tractor in a plowed field. Elements of the
matrix are identified according to position in the matrix. For example, 8 is in position 2, 3 because
it is in the second row and the third column. You might remember that you always list the rows
before the columns by using the phrase Rowman Catholic. The symbol, (aij) refers to a matrix.
The entry in the ith row and the jth column of this matrix is denoted by aij . Using this notation
on the above matrix, a23 = 8, a32 = −9, a12 = 2, etc.

There are various operations which are done on matrices. Matrices can be added multiplied by
a scalar, and multiplied by other matrices. To illustrate scalar multiplication, consider the following
example in which a matrix is being multiplied by the scalar 3.

3




1 2 3 4
5 2 8 7
6 −9 1 2


 =




3 6 9 12
15 6 24 21
18 −27 3 6


 .

The new matrix is obtained by multiplying every entry of the original matrix by the given scalar. If
A is an m× n matrix, −A is defined to equal (−1)A.

Two matrices must be the same size to be added. The sum of two matrices is a matrix which is

77

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



78 MATRICES

obtained by adding the corresponding entries. Thus



1 2
3 4
5 2


+




−1 4
2 8
6 −4


 =




0 6
5 12
11 −2


 .

Two matrices are equal exactly when they are the same size and the corresponding entries are
identical. Thus 


0 0
0 0
0 0


 ̸=

(
0 0
0 0

)

because they are different sizes. As noted above, you write (cij) for the matrix C whose ijth entry is
cij . In doing arithmetic with matrices you must define what happens in terms of the cij sometimes
called the entries of the matrix or the components of the matrix.

The above discussion stated for general matrices is given in the following definition.

Definition 5.1.1 (Scalar Multiplication) If A = (aij) and k is a scalar, then kA = (kaij) .

Example 5.1.2 7

(
2 0
1 −4

)
=

(
14 0
7 −28

)
.

Definition 5.1.3 (Addition) If A = (aij) and B = (bij) are two m× n matrices. Then A+B = C
where

C = (cij)

for cij = aij + bij .

Example 5.1.4 (
1 2 3
1 0 4

)
+

(
5 2 3
−6 2 1

)
=

(
6 4 6
−5 2 5

)

To save on notation, we will often use Aij to refer to the ijth entry of the matrix A.

Definition 5.1.5 (The zero matrix) The m×n zero matrix is the m×n matrix having every entry
equal to zero. It is denoted by 0.

Example 5.1.6 The 2× 3 zero matrix is

(
0 0 0
0 0 0

)
.

Note there are 2 × 3 zero matrices, 3 × 4 zero matrices, etc. In fact there is a zero matrix for
every size.

Definition 5.1.7 (Equality of matrices) Let A and B be two matrices. Then A = B means that
the two matrices are of the same size and for A = (aij) and B = (bij) , aij = bij for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

The following properties of matrices can be easily verified. You should do so.

• Commutative Law Of Addition.
A+B = B +A, (5.1)

• Associative Law for Addition.

(A+B) + C = A+ (B + C) , (5.2)

• Existence of an Additive Identity
A+ 0 = A, (5.3)
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• Existence of an Additive Inverse
A+ (−A) = 0, (5.4)

Also for α, β scalars, the following additional properties hold.

• Distributive law over Matrix Addition.

α (A+B) = αA+ αB, (5.5)

• Distributive law over Scalar Addition

(α+ β)A = αA+ βA, (5.6)

• Associative law for Scalar Multiplication

α (βA) = αβ (A) , (5.7)

• Rule for Multiplication by 1.
1A = A. (5.8)

As an example, consider the Commutative Law of Addition. Let A + B = C and B + A = D.
Why is D = C?

Cij = Aij +Bij = Bij +Aij = Dij .

Therefore, C = D because the ijth entries are the same. Note that the conclusion follows from the
commutative law of addition of numbers.

5.1.2 Multiplication Of Matrices

Definition 5.1.8 Matrices which are n× 1 or 1× n are called vectors and are often denoted by a
bold letter. Thus the n× 1 matrix

x =




x1
...
xn




is also called a column vector. The 1× n matrix

(x1 · · ·xn)

is called a row vector.

Although the following description of matrix multiplication may seem strange, it is in fact the
most important and useful of the matrix operations. To begin with consider the case where a matrix
is multiplied by a column vector. First consider a special case.

(
1 2 3
4 5 6

)


7
8
9


 =?

One way to remember this is as follows. Slide the vector, placing it on top the two rows as shown
and then do the indicated operation.




7

1
8

2
9

3
7

4
8

5
9

6


 7→

(
7× 1 + 8× 2 + 9× 3
7× 4 + 8× 5 + 9× 6

)
=

(
50
122

)
.
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multiply the numbers on the top by the numbers on the bottom and add them up to get a single
number for each row of the matrix as shown above.

In more general terms,

(
a11 a12 a13
a21 a22 a23

)


x1
x2
x3


 =

(
a11x1 + a12x2 + a13x3
a21x1 + a22x2 + a23x3

)
.

Another way to think of this is

x1

(
a11
a21

)
+ x2

(
a12
a22

)
+ x3

(
a13
a23

)

Thus you take x1 times the first column, add to x2 times the second column, and finally x3 times
the third column. In general, here is the definition of how to multiply an (m× n) matrix times a
(n× 1) matrix.

Definition 5.1.9 Let A = Aij be an m× n matrix and let v be an n× 1 matrix,

v =




v1
...
vn




Then Av is an m× 1 matrix and the ith component of this matrix is

(Av)i = Ai1v1 +Ai2v2 + · · ·+Ainvn =
n∑

j=1

Aijvj .

Thus

Av =




∑n
j=1A1jvj

...∑n
j=1Amjvj


 . (5.9)

In other words, if
A = (a1, · · · ,an)

where the ak are the columns,

Av =

n∑

k=1

vkak

This follows from (5.9) and the observation that the jth column of A is




A1j

A2j

...
Amj




so (5.9) reduces to

v1




A11

A21

...
Am1


+ v2




A12

A22

...
Am2


+ · · ·+ vn




A1n

A2n

...
Amn




Note also that multiplication by an m × n matrix takes an n × 1 matrix, and produces an m × 1
matrix.
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Here is another example.

Example 5.1.10 Compute



1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 .

First of all this is of the form (3× 4) (4× 1) and so the result should be a (3× 1) . Note how the
inside numbers cancel. To get the element in the second row and first and only column, compute

4∑

k=1

a2kvk = a21v1 + a22v2 + a23v3 + a24v4

= 0× 1 + 2× 2 + 1× 0 + (−2)× 1 = 2.

You should do the rest of the problem and verify




1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 =




8
2
5


 .

The next task is to multiply anm×n matrix times an n×p matrix. Before doing so, the following
may be helpful.

For A and B matrices, in order to form the product, AB the number of columns of A must equal
the number of rows of B.

(m×
these must match!

n̂) (n× p ) = m× p

Note the two outside numbers give the size of the product. Remember:

If the two middle numbers don’t match, you can’t multiply the matrices!

Definition 5.1.11 When the number of columns of A equals the number of rows of B the two
matrices are said to be conformable and the product, AB is obtained as follows. Let A be an m×n
matrix and let B be an n× p matrix. Then B is of the form

B = (b1, · · · ,bp)

where bk is an n× 1 matrix or column vector. Then the m× p matrix AB is defined as follows:

AB ≡ (Ab1, · · · , Abp) (5.10)

where Abk is an m× 1 matrix or column vector which gives the kth column of AB.

Example 5.1.12 Multiply the following.

(
1 2 1
0 2 1

)


1 2 0
0 3 1
−2 1 1



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The first thing you need to check before doing anything else is whether it is possible to do the
multiplication. The first matrix is a 2× 3 and the second matrix is a 3× 3. Therefore, is it possible
to multiply these matrices. According to the above discussion it should be a 2 × 3 matrix of the
form 



First column︷ ︸︸ ︷
(

1 2 1
0 2 1

)


1
0
−2


,

Second column︷ ︸︸ ︷
(

1 2 1
0 2 1

)


2
3
1


,

Third column︷ ︸︸ ︷
(

1 2 1
0 2 1

)


0
1
1







You know how to multiply a matrix times a vector and so you do so to obtain each of the three
columns. Thus (

1 2 1
0 2 1

)


1 2 0
0 3 1
−2 1 1


 =

(
−1 9 3
−2 7 3

)
.

Example 5.1.13 Multiply the following.




1 2 0
0 3 1
−2 1 1



(

1 2 1
0 2 1

)

First check if it is possible. This is of the form (3× 3) (2× 3) . The inside numbers do not
match and so you can’t do this multiplication. This means that anything you write will be absolute
nonsense because it is impossible to multiply these matrices in this order. Aren’t they the same
two matrices considered in the previous example? Yes they are. It is just that here they are in a
different order. This shows something you must always remember about matrix multiplication.

Order Matters!

Matrix Multiplication Is Not Commutative!

This is very different than multiplication of numbers!

5.1.3 The ijth Entry Of A Product

It is important to describe matrix multiplication in terms of entries of the matrices. What is the
ijth entry of AB? It would be the ith entry of the jth column of AB. Thus it would be the ith entry
of Abj . Now

bj =




B1j

...
Bnj




and from the above definition, the ith entry is

n∑

k=1

AikBkj . (5.11)

In terms of pictures of the matrix, you are doing




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...
Bn1 Bn2 · · · Bnp



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Then as explained above, the jth column is of the form




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B1j

B2j

...
Bnj




which is a m× 1 matrix or column vector which equals




A11

A21

...
Am1


B1j +




A12

A22

...
Am2


B2j + · · ·+




A1n

A2n

...
Amn


Bnj .

The second entry of this m× 1 matrix is

A21B1j +A22B2j + · · ·+A2nBnj =
m∑

k=1

A2kBkj .

Similarly, the ith entry of this m× 1 matrix is

Ai1B1j +Ai2B2j + · · ·+AinBnj =

m∑

k=1

AikBkj .

This shows the following definition for matrix multiplication in terms of the ijth entries of the
product coincides with Definition 5.1.11.

Definition 5.1.14 Let A = (Aij) be an m× n matrix and let B = (Bij) be an n× p matrix. Then
AB is an m× p matrix and

(AB)ij =

n∑

k=1

AikBkj . (5.12)

Another way to write this is

(AB)ij =
(
Ai1 Ai2 · · · Ain

)




B1j

B2j

...
Bnj




Note that to get (AB)ij you involve the ith row of A and the jth column of B. Specifically, the ijth

entry of AB is the dot product of the ith row of A with the jth column of B. This is what the formula
in (5.12) says. (Note that here the dot product does not involve taking conjugates.)

Example 5.1.15 Multiply if possible




1 2
3 1
2 6



(

2 3 1
7 6 2

)
.

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since the inside numbers
match, the two matrices are conformable and it is possible to do the multiplication. The result
should be a 3× 3 matrix. The answer is of the form






1 2
3 1
2 6



(

2
7

)
,




1 2
3 1
2 6



(

3
6

)
,




1 2
3 1
2 6



(

1
2

)

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where the commas separate the columns in the resulting product. Thus the above product equals




16 15 5
13 15 5
46 42 14


 ,

a 3×3 matrix as desired. In terms of the ijth entries and the above definition, the entry in the third
row and second column of the product should equal

∑

j

a3kbk2 = a31b12 + a32b22

= 2× 3 + 6× 6 = 42.

You should try a few more such examples to verify the above definition in terms of the ijth entries
works for other entries.

Example 5.1.16 Multiply if possible




1 2
3 1
2 6






2 3 1
7 6 2
0 0 0


 .

This is not possible because it is of the form (3× 2) (3× 3) and the middle numbers don’t match.
In other words the two matrices are not conformable in the indicated order.

Example 5.1.17 Multiply if possible




2 3 1
7 6 2
0 0 0






1 2
3 1
2 6


 .

This is possible because in this case it is of the form (3× 3) (3× 2) and the middle numbers do
match so the matrices are conformable. When the multiplication is done it equals




13 13
29 32
0 0


 .

Check this and be sure you come up with the same answer.

Example 5.1.18 Multiply if possible




1
2
1


( 1 2 1 0

)
.

In this case you are trying to do (3× 1) (1× 4) . The inside numbers match so you can do it.
Verify 


1
2
1


( 1 2 1 0

)
=




1 2 1 0
2 4 2 0
1 2 1 0




5.1.4 Properties Of Matrix Multiplication

As pointed out above, sometimes it is possible to multiply matrices in one order but not in the other
order. What if it makes sense to multiply them in either order? Will the two products be equal
then?

Example 5.1.19 Compare

(
1 2
3 4

)(
0 1
1 0

)
and

(
0 1
1 0

)(
1 2
3 4

)
.
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The first product is (
1 2
3 4

)(
0 1
1 0

)
=

(
2 1
4 3

)
.

The second product is (
0 1
1 0

)(
1 2
3 4

)
=

(
3 4
1 2

)
.

You see these are not equal. Again you cannot conclude that AB = BA for matrix multiplication
even when multiplication is defined in both orders. However, there are some properties which do
hold.

Proposition 5.1.20 If all multiplications and additions make sense, the following hold for matrices,
A,B,C and a, b scalars.

A (aB + bC) = a (AB) + b (AC) (5.13)

(B + C)A = BA+ CA (5.14)

A (BC) = (AB)C (5.15)

Proof: Using Definition 5.1.14,

(A (aB + bC))ij =
∑

k

Aik (aB + bC)kj

=
∑

k

Aik (aBkj + bCkj)

= a
∑

k

AikBkj + b
∑

k

AikCkj

= a (AB)ij + b (AC)ij
= (a (AB) + b (AC))ij .

Thus A (B + C) = AB +AC as claimed. Formula (5.14) is entirely similar.
Formula (5.15) is the associative law of multiplication. Using Definition 5.1.14,

(A (BC))ij =
∑

k

Aik (BC)kj

=
∑

k

Aik

∑

l

BklClj

=
∑

l

(AB)il Clj

= ((AB)C)ij .

This proves (5.15). �

5.1.5 The Transpose

Another important operation on matrices is that of taking the transpose. The following example
shows what is meant by this operation, denoted by placing a T as an exponent on the matrix.




1 4
3 1
2 6




T

=

(
1 3 2
4 1 6

)

What happened? The first column became the first row and the second column became the second
row. Thus the 3 × 2 matrix became a 2 × 3 matrix. The number 3 was in the second row and the
first column and it ended up in the first row and second column. Here is the definition.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



86 MATRICES

Definition 5.1.21 Let A be an m× n matrix. Then AT denotes the n×m matrix which is defined
as follows. (

AT
)
ij
= Aji

Example 5.1.22
(

1 2 −6
3 5 4

)T

=




1 3
2 5
−6 4


 .

The transpose of a matrix has the following important properties.

Lemma 5.1.23 Let A be an m× n matrix and let B be a n× p matrix. Then

(AB)
T
= BTAT (5.16)

and if α and β are scalars,
(αA+ βB)

T
= αAT + βBT (5.17)

Proof: From the definition,
(
(AB)

T
)
ij

= (AB)ji

=
∑

k

AjkBki

=
∑

k

(
BT
)
ik

(
AT
)
kj

=
(
BTAT

)
ij

The proof of Formula (5.17) is left as an exercise. �

Definition 5.1.24 An n × n matrix A is said to be symmetric if A = AT . It is said to be skew

symmetric if A = −AT .

Example 5.1.25 Let

A =




2 1 3
1 5 −3
3 −3 7


 .

Then A is symmetric.

Example 5.1.26 Let

A =




0 1 3
−1 0 2
−3 −2 0




Then A is skew symmetric.

5.1.6 The Identity And Inverses

There is a special matrix called I and referred to as the identity matrix. It is always a square matrix,
meaning the number of rows equals the number of columns and it has the property that there are
ones down the main diagonal and zeroes elsewhere. Here are some identity matrices of various sizes.

(1) ,

(
1 0
0 1

)
,




1 0 0
0 1 0
0 0 1


 ,




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .
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The first is the 1× 1 identity matrix, the second is the 2× 2 identity matrix, the third is the 3× 3
identity matrix, and the fourth is the 4 × 4 identity matrix. By extension, you can likely see what
the n× n identity matrix would be. It is so important that there is a special symbol to denote the
ijth entry of the identity matrix

Iij = δij

where δij is the Kronecker symbol defined by

δij =

{
1 if i = j
0 if i ̸= j

It is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 5.1.27 Suppose A is an m×n matrix and In is the n×n identity matrix. Then AIn = A.
If Im is the m×m identity matrix, it also follows that ImA = A.

Proof:

(AIn)ij =
∑

k

Aikδkj

= Aij

and so AIn = A. The other case is left as an exercise for you. �

Definition 5.1.28 An n × n matrix A has an inverse, A−1 if and only if AA−1 = A−1A = I.
Such a matrix is called invertible.

It is very important to observe that the inverse of a matrix, if it exists, is unique. Another way
to think of this is that if it acts like the inverse, then it is the inverse.

Theorem 5.1.29 Suppose A−1 exists and AB = BA = I. Then B = A−1.

Proof:

A−1 = A−1I = A−1 (AB) =
(
A−1A

)
B = IB = B. �

Unlike ordinary multiplication of numbers, it can happen that A ̸= 0 but A may fail to have an
inverse. This is illustrated in the following example.

Example 5.1.30 Let A =

(
1 1
1 1

)
. Does A have an inverse?

One might think A would have an inverse because it does not equal zero. However,

(
1 1
1 1

)(
−1
1

)
=

(
0
0

)

and if A−1 existed, this could not happen because you could write

(
0
0

)
= A−1

((
0
0

))
= A−1

(
A

(
−1
1

))
=

=
(
A−1A

)( −1
1

)
= I

(
−1
1

)
=

(
−1
1

)
,

a contradiction. Thus the answer is that A does not have an inverse.
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Example 5.1.31 Let A =

(
1 1
1 2

)
. Show

(
2 −1
−1 1

)
is the inverse of A.

To check this, multiply

(
1 1
1 2

)(
2 −1
−1 1

)
=

(
1 0
0 1

)

and (
2 −1
−1 1

)(
1 1
1 2

)
=

(
1 0
0 1

)

showing that this matrix is indeed the inverse of A.

5.1.7 Finding The Inverse Of A Matrix

In the last example, how would you find A−1? You wish to find a matrix

(
x z
y w

)
such that

(
1 1
1 2

)(
x z
y w

)
=

(
1 0
0 1

)
.

This requires the solution of the systems of equations,

x+ y = 1, x+ 2y = 0

and
z + w = 0, z + 2w = 1.

Writing the augmented matrix for these two systems gives

(
1 1 | 1
1 2 | 0

)
(5.18)

for the first system and (
1 1 | 0
1 2 | 1

)
(5.19)

for the second. Lets solve the first system. Take (−1) times the first row and add to the second to
get (

1 1 | 1
0 1 | −1

)

Now take (−1) times the second row and add to the first to get

(
1 0 | 2
0 1 | −1

)
.

Putting in the variables, this says x = 2 and y = −1.
Now solve the second system, (5.19) to find z and w. Take (−1) times the first row and add to

the second to get (
1 1 | 0
0 1 | 1

)
.

Now take (−1) times the second row and add to the first to get

(
1 0 | −1
0 1 | 1

)
.
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Putting in the variables, this says z = −1 and w = 1. Therefore, the inverse is
(

2 −1
−1 1

)
.

Didn’t the above seem rather repetitive? Note that exactly the same row operations were used
in both systems. In each case, the end result was something of the form (I|v) where I is the identity

and v gave a column of the inverse. In the above,

(
x
y

)
, the first column of the inverse was

obtained first and then the second column

(
z
w

)
.

To simplify this procedure, you could have written
(

1 1 | 1 0
1 2 | 0 1

)

and row reduced till you obtained
(

1 0 | 2 −1
0 1 | −1 1

)

and read off the inverse as the 2× 2 matrix on the right side.
This is the reason for the following simple procedure for finding the inverse of a matrix. This

procedure is called the Gauss-Jordan procedure.

Procedure 5.1.32 Suppose A is an n × n matrix. To find A−1 if it exists, form the augmented
n× 2n matrix

(A|I)
and then, if possible do row operations until you obtain an n× 2n matrix of the form

(I|B) . (5.20)

When this has been done, B = A−1. If it is impossible to row reduce to a matrix of the form (I|B) ,
then A has no inverse.

Actually, all this shows is how to find a right inverse if it exists. Later, I will show that this right
inverse is the inverse. See Corollary 7.2.15 or Theorem 8.2.11 presented later.

Example 5.1.33 Let A =




1 2 2
1 0 2
3 1 −1


. Find A−1 if it exists.

Set up the augmented matrix (A|I)



1 2 2 | 1 0 0
1 0 2 | 0 1 0
3 1 −1 | 0 0 1




Next take (−1) times the first row and add to the second followed by (−3) times the first row added
to the last. This yields 


1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 −5 −7 | −3 0 1


 .

Then take 5 times the second row and add to -2 times the last row.



1 2 2 | 1 0 0
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2



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Next take the last row and add to (−7) times the top row. This yields




−7 −14 0 | −6 5 −2
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2


 .

Now take (−7/5) times the second row and add to the top.




−7 0 0 | 1 −2 −2
0 −10 0 | −5 5 0
0 0 14 | 1 5 −2


 .

Finally divide the top row by -7, the second row by -10 and the bottom row by 14 which yields



1 0 0 | − 1
7

2
7

2
7

0 1 0 | 1
2 − 1

2 0

0 0 1 | 1
14

5
14 − 1

7



.

Therefore, the inverse is 


− 1
7

2
7

2
7

1
2 − 1

2 0

1
14

5
14 − 1

7




Example 5.1.34 Let A =




1 2 2
1 0 2
2 2 4


. Find A−1 if it exists.

Write the augmented matrix (A|I)



1 2 2 | 1 0 0
1 0 2 | 0 1 0
2 2 4 | 0 0 1




and proceed to do row operations attempting to obtain
(
I|A−1

)
. Take (−1) times the top row and

add to the second. Then take (−2) times the top row and add to the bottom.




1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 −2 0 | −2 0 1




Next add (−1) times the second row to the bottom row.




1 2 2 | 1 0 0
0 −2 0 | −1 1 0
0 0 0 | −1 −1 1




At this point, you can see there will be no inverse because you have obtained a row of zeros in the
left half of the augmented matrix (A|I) . Thus there will be no way to obtain I on the left.

Example 5.1.35 Let A =




1 0 1
1 −1 1
1 1 −1


. Find A−1 if it exists.
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◮◮

Form the augmented matrix




1 0 1 | 1 0 0
1 −1 1 | 0 1 0
1 1 −1 | 0 0 1


 .

Now do row operations until the n× n matrix on the left becomes the identity matrix. This yields
after some computations, 



1 0 0 | 0 1
2

1
2

0 1 0 | 1 −1 0
0 0 1 | 1 − 1

2 − 1
2




and so the inverse of A is the matrix on the right,




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 .

Checking the answer is easy. Just multiply the matrices and see if it works.




1 0 1
1 −1 1
1 1 −1







0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 =




1 0 0
0 1 0
0 0 1


 .

Always check your answer because if you are like some of us, you will usually have made a mistake.

Example 5.1.36 In this example, it is shown how to use the inverse of a matrix to find the solution
to a system of equations. Consider the following system of equations. Use the inverse of a suitable
matrix to give the solutions to this system.




x+ z = 1
x− y + z = 3
x+ y − z = 2


 .

The system of equations can be written in terms of matrices as




1 0 1
1 −1 1
1 1 −1






x
y
z


 =




1
3
2


 . (5.21)

More simply, this is of the form Ax = b. Suppose you find the inverse of the matrix A−1. Then you
could multiply both sides of this equation by A−1 to obtain

x =
(
A−1A

)
x = A−1 (Ax) = A−1b.

This gives the solution as x = A−1b. Note that once you have found the inverse, you can easily get
the solution for different right hand sides without any effort. It is always just A−1b. In the given
example, the inverse of the matrix is




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2



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This was shown in Example 5.1.35. Therefore, from what was just explained, the solution to the
given system is 


x
y
z


 =




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2






1
3
2


 =




5
2
−2
− 3

2


 .

What if the right side of (5.21) had been



0
1
3


?

What would be the solution to



1 0 1
1 −1 1
1 1 −1






x
y
z


 =




0
1
3


?

By the above discussion, it is just



x
y
z


 =




0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2






0
1
3


 =




2
−1
−2


 .

This illustrates why once you have found the inverse of a given matrix, you can use it to solve many
different systems easily.

5.2 Exercises

1. Here are some matrices:

A =

(
1 2 3
2 1 7

)
, B =

(
3 −1 2
−3 2 1

)
,

C =

(
1 2
3 1

)
, D =

(
−1 2
2 −3

)
, E =

(
2
3

)
.

Find if possible −3A, 3B −A,AC,CB,AE,EA. If it is not possible explain why.

2. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =

(
1 2
5 0

)
, D =

(
−1 1
4 −3

)
, E =

(
1
3

)
.

Find if possible −3A, 3B −A,AC,CA,AE,EA,BE,DE. If it is not possible explain why.

3. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =

(
1 2
5 0

)
, D =

(
−1 1
4 −3

)
, E =

(
1
3

)
.

Find if possible −3AT , 3B −AT , AC,CA,AE,ETB,BE,DE,EET , ETE. If it is not possible
explain why.
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4. Here are some matrices:

A =




1 2
3 2
1 −1


 , B =

(
2 −5 2
−3 2 1

)
,

C =

(
1 2
5 0

)
, D =

(
−1
4

)
, E =

(
1
3

)
.

Find the following if possible and explain why it is not possible if this is the case.

AD,DA,DTB,DTBE,ETD,DET .

5. Let A =




1 1
−2 −1
1 2


, B =

(
1 −1 −2
2 1 −2

)
, and C =




1 1 −3
−1 2 0
−3 −1 0


 . Find if possi-

ble.

(a) AB

(b) BA

(c) AC

(d) CA

(e) CB

(f) BC

6. Suppose A and B are square matrices of the same size. Which of the following are correct?

(a) (A−B)
2
= A2 − 2AB +B2

(b) (AB)
2
= A2B2

(c) (A+B)
2
= A2 + 2AB +B2

(d) (A+B)
2
= A2 +AB +BA+B2

(e) A2B2 = A (AB)B

(f) (A+B)
3
= A3 + 3A2B + 3AB2 +B3

(g) (A+B) (A−B) = A2 −B2

7. Let A =

(
−1 −1
3 3

)
. Find all 2× 2 matrices, B such that AB = 0.

8. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find xTy and xyT if possible.

9. Let A =

(
1 2
3 4

)
, B =

(
1 2
3 k

)
. Is it possible to choose k such that AB = BA? If so,

what should k equal?

10. Let A =

(
1 2
3 4

)
, B =

(
1 2
1 k

)
. Is it possible to choose k such that AB = BA? If so,

what should k equal?

11. In (5.1) - (5.8) describe −A and 0.

12. Let A be an n × n matrix. Show A equals the sum of a symmetric and a skew symmetric
matrix. (M is skew symmetric if M = −MT . M is symmetric if MT =M .) Hint: Show that
1
2

(
AT +A

)
is symmetric and then consider using this as one of the matrices.
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13. Show every skew symmetric matrix has all zeros down the main diagonal. The main diagonal
consists of every entry of the matrix which is of the form aii. It runs from the upper left down
to the lower right.

14. Suppose M is a 3× 3 skew symmetric matrix. Show there exists a vector Ω such that for all
u ∈ R3

Mu = Ω× u

Hint: Explain why, since M is skew symmetric it is of the form

M =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




where the ωi are numbers. Then consider ω1i+ ω2j+ ω3k.

15. Using only the properties (5.1) - (5.8) show −A is unique.

16. Using only the properties (5.1) - (5.8) show 0 is unique.

17. Using only the properties (5.1) - (5.8) show 0A = 0. Here the 0 on the left is the scalar 0 and
the 0 on the right is the zero for m× n matrices.

18. Using only the properties (5.1) - (5.8) and previous problems show (−1)A = −A.

19. Prove (5.17).

20. Prove that ImA = A where A is an m× n matrix.

21. Give an example of matrices, A,B,C such that B ̸= C, A ̸= 0, and yet AB = AC.

22. Suppose AB = AC and A is an invertible n× n matrix. Does it follow that B = C? Explain
why or why not. What if A were a non invertible n× n matrix?

23. Find your own examples:

(a) 2× 2 matrices, A and B such that A ̸= 0, B ̸= 0 with AB ̸= BA.

(b) 2× 2 matrices, A and B such that A ̸= 0, B ̸= 0, but AB = 0.

(c) 2× 2 matrices, A, D, and C such that A ̸= 0, C ̸= D, but AC = AD.

24. Explain why if AB = AC and A−1 exists, then B = C.

25. Give an example of a matrix A such that A2 = I and yet A ̸= I and A ̸= −I.

26. Give an example of matrices, A,B such that neither A nor B equals zero and yet AB = 0.

27. Give another example other than the one given in this section of two square matrices, A and
B such that AB ̸= BA.

28. Let

A =

(
2 1
−1 3

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

29. Let

A =

(
0 1
5 3

)
.

Find A−1 if possible. If A−1 does not exist, determine why.
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30. Let

A =

(
2 1
3 0

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

31. Let

A =

(
2 1
4 2

)
.

Find A−1 if possible. If A−1 does not exist, determine why.

32. Let A be a 2× 2 matrix which has an inverse. Say A =

(
a b
c d

)
. Find a formula for A−1 in

terms of a, b, c, d.

33. Let

A =




1 2 3
2 1 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

34. Let

A =




1 0 3
2 3 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

35. Let

A =




1 2 3
2 1 4
4 5 10


 .

Find A−1 if possible. If A−1 does not exist, determine why.

36. Let

A =




1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2




Find A−1 if possible. If A−1 does not exist, determine why.

37. Write




x1 − x2 + 2x3
2x3 + x1

3x3
3x4 + 3x2 + x1


 in the form A




x1
x2
x3
x4


 where A is an appropriate matrix.

38. Write




x1 + 3x2 + 2x3
2x3 + x1

6x3
x4 + 3x2 + x1


 in the form A




x1
x2
x3
x4


 where A is an appropriate matrix.

39. Write




x1 + x2 + x3
2x3 + x1 + x2

x3 − x1
3x4 + x1


 in the form A




x1
x2
x3
x4


 where A is an appropriate matrix.
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40. Using the inverse of the matrix, find the solution to the systems



1 0 3
2 3 4
1 0 2






x
y
z


 =




1
2
3


 ,




1 0 3
2 3 4
1 0 2






x
y
z


 =




2
1
0







1 0 3
2 3 4
1 0 2






x
y
z


 =




1
0
1


 ,




1 0 3
2 3 4
1 0 2






x
y
z


 =




3
−1
−2


 .

Now give the solution in terms of a, b, and c to



1 0 3
2 3 4
1 0 2






x
y
z


 =




a
b
c


 .

41. Using the inverse of the matrix, find the solution to the systems



1 0 3
2 3 4
1 0 2






x
y
z


 =




1
2
3


 ,




1 0 3
2 3 4
1 0 2






x
y
z


 =




2
1
0







1 0 3
2 3 4
1 0 2






x
y
z


 =




1
0
1


 ,




1 0 3
2 3 4
1 0 2






x
y
z


 =




3
−1
−2


 .

Now give the solution in terms of a, b, and c to



1 0 3
2 3 4
1 0 2






x
y
z


 =




a
b
c


 .

42. Using the inverse of the matrix, find the solution to the system



−1 1
2

1
2

1
2

3 1
2 − 1

2 − 5
2

−1 0 0 1
−2 − 3

4
1
4

9
4







x
y
z
w


 =




a
b
c
d


 .

43. Show that if A is an n× n invertible matrix and x is a n× 1 matrix such that Ax = b for b
an n× 1 matrix, then x = A−1b.

44. Prove that if A−1 exists and Ax = 0 then x = 0.

45. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and AB = I,
then B = A−1.

46. Show that if A is an invertible n× n matrix, then so is AT and
(
AT
)−1

=
(
A−1

)T
.

47. Show (AB)
−1

= B−1A−1 by verifying that AB
(
B−1A−1

)
= I and

B−1A−1 (AB) = I.

Hint: Use Problem 45.

48. Show that (ABC)
−1

= C−1B−1A−1 by verifying that

(ABC)
(
C−1B−1A−1

)
= I

and
(
C−1B−1A−1

)
(ABC) = I. Hint: Use Problem 45.
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49. If A is invertible, show
(
A2
)−1

=
(
A−1

)2
. Hint: Use Problem 45.

50. If A is invertible, show
(
A−1

)−1
= A. Hint: Use Problem 45.

51. Let A and be a real m× n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)
Rm =

(
x,ATy

)
Rn

where (·, ·)
Rk denotes the dot product in Rk. In the notation above, Ax · y = x·ATy. Use the

definition of matrix multiplication to do this.

52. Use the result of Problem 51 to verify directly that (AB)
T

= BTAT without making any
reference to subscripts.

53. A matrix A is called a projection if A2 = A. Here is a matrix.




2 0 2
1 1 2
−1 0 −1




Show that this is a projection. Show that a vector in the column space of a projection matrix
is left unchanged by multiplication by A.
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Determinants

6.1 Basic Techniques And Properties

6.1.1 Cofactors And 2× 2 Determinants

Let A be an n× n matrix. The determinant of A, denoted as det (A) is a number. If the matrix
is a 2×2 matrix, this number is very easy to find.

Definition 6.1.1 Let A =

(
a b
c d

)
. Then

det (A) ≡ ad− cb.

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

det

(
a b
c d

)
=

∣∣∣∣
a b
c d

∣∣∣∣ .

Example 6.1.2 Find det

(
2 4
−1 6

)
.

From the definition this is just (2) (6)− (−1) (4) = 16.
Having defined what is meant by the determinant of a 2× 2 matrix, what about a 3× 3 matrix?

Definition 6.1.3 Suppose A is a 3 × 3 matrix. The ijth minor, denoted as minor(A)ij , is the

determinant of the 2× 2 matrix which results from deleting the ith row and the jth column.

Example 6.1.4 Consider the matrix



1 2 3
4 3 2
3 2 1


 .

The (1, 2) minor is the determinant of the 2× 2 matrix which results when you delete the first row
and the second column. This minor is therefore

det

(
4 2
3 1

)
= −2.

The (2, 3) minor is the determinant of the 2×2 matrix which results when you delete the second row
and the third column. This minor is therefore

det

(
1 2
3 2

)
= −4.

99
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Definition 6.1.5 Suppose A is a 3 × 3 matrix. The ijth cofactor is defined to be (−1)
i+j ×(

ijth minor
)
. In words, you multiply (−1)

i+j
times the ijth minor to get the ijth cofactor. The

cofactors of a matrix are so important that special notation is appropriate when referring to them.
The ijth cofactor of a matrix A will be denoted by cof (A)ij . It is also convenient to refer to the
cofactor of an entry of a matrix as follows. For aij an entry of the matrix, its cofactor is just
cof (A)ij . Thus the cofactor of the ijth entry is just the ijth cofactor.

Example 6.1.6 Consider the matrix

A =




1 2 3
4 3 2
3 2 1


 .

The (1, 2) minor is the determinant of the 2× 2 matrix which results when you delete the first row
and the second column. This minor is therefore

det

(
4 2
3 1

)
= −2.

It follows

cof (A)12 = (−1)
1+2

det

(
4 2
3 1

)
= (−1)

1+2
(−2) = 2

The (2, 3) minor is the determinant of the 2×2 matrix which results when you delete the second row
and the third column. This minor is therefore

det

(
1 2
3 2

)
= −4.

Therefore,

cof (A)23 = (−1)
2+3

det

(
1 2
3 2

)
= (−1)

2+3
(−4) = 4.

Similarly,

cof (A)22 = (−1)
2+2

det

(
1 3
3 1

)
= −8.

Definition 6.1.7 The determinant of a 3× 3 matrix A, is obtained by picking a row (column) and
taking the product of each entry in that row (column) with its cofactor and adding these up. This
process when applied to the ith row (column) is known as expanding the determinant along the ith

row (column).

Example 6.1.8 Find the determinant of

A =




1 2 3
4 3 2
3 2 1


 .

Here is how it is done by “expanding along the first column”.

1

cof(A)
11︷ ︸︸ ︷

(−1)
1+1

∣∣∣∣
3 2
2 1

∣∣∣∣+ 4

cof(A)
21︷ ︸︸ ︷

(−1)
2+1

∣∣∣∣
2 3
2 1

∣∣∣∣+ 3

cof(A)
31︷ ︸︸ ︷

(−1)
3+1

∣∣∣∣
2 3
3 2

∣∣∣∣ = 0.

You see, we just followed the rule in the above definition. We took the 1 in the first column and
multiplied it by its cofactor, the 4 in the first column and multiplied it by its cofactor, and the 3 in
the first column and multiplied it by its cofactor. Then we added these numbers together.
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You could also expand the determinant along the second row as follows.

4

cof(A)
21︷ ︸︸ ︷

(−1)
2+1

∣∣∣∣
2 3
2 1

∣∣∣∣+ 3

cof(A)
22︷ ︸︸ ︷

(−1)
2+2

∣∣∣∣
1 3
3 1

∣∣∣∣+ 2

cof(A)
23︷ ︸︸ ︷

(−1)
2+3

∣∣∣∣
1 2
3 2

∣∣∣∣ = 0.

Observe this gives the same number. You should try expanding along other rows and columns. If
you don’t make any mistakes, you will always get the same answer.

What about a 4× 4 matrix? You know now how to find the determinant of a 3× 3 matrix. The
pattern is the same.

Definition 6.1.9 Suppose A is a 4 × 4 matrix. The ijth minor is the determinant of the 3 × 3
matrix you obtain when you delete the ith row and the jth column. The ijth cofactor, cof (A)ij is

defined to be (−1)
i+j ×

(
ijth minor

)
. In words, you multiply (−1)

i+j
times the ijth minor to get the

ijth cofactor.

Definition 6.1.10 The determinant of a 4×4 matrix A, is obtained by picking a row (column) and
taking the product of each entry in that row (column) with its cofactor and adding these together.
This process when applied to the ith row (column) is known as expanding the determinant along the
ith row (column).

Example 6.1.11 Find det (A) where

A =




1 2 3 4
5 4 2 3
1 3 4 5
3 4 3 2




As in the case of a 3 × 3 matrix, you can expand this along any row or column. Lets pick the
third column. det (A) =

3 (−1)
1+3

∣∣∣∣∣∣

5 4 3
1 3 5
3 4 2

∣∣∣∣∣∣
+ 2 (−1)

2+3

∣∣∣∣∣∣

1 2 4
1 3 5
3 4 2

∣∣∣∣∣∣
+

4 (−1)
3+3

∣∣∣∣∣∣

1 2 4
5 4 3
3 4 2

∣∣∣∣∣∣
+ 3 (−1)

4+3

∣∣∣∣∣∣

1 2 4
5 4 3
1 3 5

∣∣∣∣∣∣
.

Now you know how to expand each of these 3×3 matrices along a row or a column. If you do so, you
will get −12 assuming you make no mistakes. You could expand this matrix along any row or any
column and assuming you make no mistakes, you will always get the same thing which is defined to
be the determinant of the matrix A. This method of evaluating a determinant by expanding along
a row or a column is called the method of Laplace expansion.

Note that each of the four terms above involves three terms consisting of determinants of 2× 2
matrices and each of these will need 2 terms. Therefore, there will be 4 × 3 × 2 = 24 terms to
evaluate in order to find the determinant using the method of Laplace expansion. Suppose now you
have a 10× 10 matrix and you follow the above pattern for evaluating determinants. By analogy to
the above, there will be 10! = 3, 628 , 800 terms involved in the evaluation of such a determinant by
Laplace expansion along a row or column. This is a lot of terms.

In addition to the difficulties just discussed, you should regard the above claim that you always
get the same answer by picking any row or column with considerable skepticism. It is incredible and
not at all obvious. However, it requires a little effort to establish it. This is done in the section on
the theory of the determinant.
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Definition 6.1.12 Let A = (aij) be an n × n matrix and suppose the determinant of a (n− 1) ×
(n− 1) matrix has been defined. Then a new matrix called the cofactor matrix, cof (A) is defined by
cof (A) = (cij) where to obtain cij delete the ith row and the jth column of A, take the determinant
of the (n− 1) × (n− 1) matrix which results, (This is called the ijth minor of A. ) and then

multiply this number by (−1)
i+j

. Thus (−1)
i+j ×

(
the ijth minor

)
equals the ijth cofactor. To make

the formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

With this definition of the cofactor matrix, here is how to define the determinant of an n × n
matrix.

Definition 6.1.13 Let A be an n × n matrix where n ≥ 2 and suppose the determinant of an
(n− 1)× (n− 1) has been defined. Then

det (A) =

n∑

j=1

aij cof (A)ij =

n∑

i=1

aij cof (A)ij . (6.1)

The first formula consists of expanding the determinant along the ith row and the second expands
the determinant along the jth column.

Theorem 6.1.14 Expanding the n × n matrix along any row or column always gives the same
answer so the above definition is a good definition.

6.1.2 The Determinant Of A Triangular Matrix

Notwithstanding the difficulties involved in using the method of Laplace expansion, certain types of
matrices are very easy to deal with.

Definition 6.1.15 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such a matrix
equals zero below the main diagonal, the entries of the form Mii, as shown.




∗ ∗ · · · ∗
0 ∗ . . .

...
...

. . .
. . . ∗

0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the main
diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 6.1.16 LetM be an upper (lower) triangular matrix. Then det (M) is obtained by taking
the product of the entries on the main diagonal.

Example 6.1.17 Let

A =




1 2 3 77
0 2 6 7
0 0 3 33.7
0 0 0 −1




Find det (A) .
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From the above corollary, it suffices to take the product of the diagonal elements. Thus det (A) =
1× 2× 3× (−1) = −6. Without using the corollary, you could expand along the first column. This
gives

1

∣∣∣∣∣∣

2 6 7
0 3 33.7
0 0 −1

∣∣∣∣∣∣
+ 0 (−1)

2+1

∣∣∣∣∣∣

2 3 77
0 3 33.7
0 0 −1

∣∣∣∣∣∣
+

0 (−1)
3+1

∣∣∣∣∣∣

2 3 77
2 6 7
0 0 −1

∣∣∣∣∣∣
+ 0 (−1)

4+1

∣∣∣∣∣∣

2 3 77
2 6 7
0 3 33.7

∣∣∣∣∣∣

and the only nonzero term in the expansion is

1

∣∣∣∣∣∣

2 6 7
0 3 33.7
0 0 −1

∣∣∣∣∣∣
.

Now expand this along the first column to obtain

1×
(
2×

∣∣∣∣
3 33.7
0 −1

∣∣∣∣+ 0 (−1)
2+1

∣∣∣∣
6 7
0 −1

∣∣∣∣+ 0 (−1)
3+1

∣∣∣∣
6 7
3 33.7

∣∣∣∣
)

= 1× 2×
∣∣∣∣
3 33.7
0 −1

∣∣∣∣

Next expand this last determinant along the first column to obtain the above equals

1× 2× 3× (−1) = −6

which is just the product of the entries down the main diagonal of the original matrix.

6.1.3 Properties Of Determinants

There are many properties satisfied by determinants. Some of these properties have to do with row
operations. Recall the row operations.

Definition 6.1.18 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to itself.

Theorem 6.1.19 Let A be an n× n matrix and let A1 be a matrix which results from multiplying
some row of A by a scalar c. Then c det (A) = det (A1).

Example 6.1.20 Let A =

(
1 2
3 4

)
, A1 =

(
2 4
3 4

)
. det (A) = −2, det (A1) = −4.

Theorem 6.1.21 Let A be an n×n matrix and let A1 be a matrix which results from switching two
rows of A. Then det (A) = − det (A1) . Also, if one row of A is a multiple of another row of A, then
det (A) = 0.

Example 6.1.22 Let A =

(
1 2
3 4

)
and let A1 =

(
3 4
1 2

)
. detA = −2, det (A1) = 2.
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Theorem 6.1.23 Let A be an n × n matrix and let A1 be a matrix which results from applying
row operation 3. That is you replace some row by a multiple of another row added to itself. Then
det (A) = det (A1).

Example 6.1.24 Let A =

(
1 2
3 4

)
and let A1 =

(
1 2
4 6

)
. Thus the second row of A1 is one

times the first row added to the second row. det (A) = −2 and det (A1) = −2.

Theorem 6.1.25 In Theorems 6.1.19 - 6.1.23 you can replace the word, “row” with the word “col-
umn”.

There are two other major properties of determinants which do not involve row operations.

Theorem 6.1.26 Let A and B be two n× n matrices. Then

det (AB) = det (A) det (B).

Also,

det (A) = det
(
AT
)
.

Example 6.1.27 Compare det (AB) and det (A) det (B) for

A =

(
1 2
−3 2

)
, B =

(
3 2
4 1

)
.

First

AB =

(
1 2
−3 2

)(
3 2
4 1

)
=

(
11 4
−1 −4

)

and so

det (AB) = det

(
11 4
−1 −4

)
= −40.

Now

det (A) = det

(
1 2
−3 2

)
= 8

and

det (B) = det

(
3 2
4 1

)
= −5.

Thus det (A) det (B) = 8× (−5) = −40.

6.1.4 Finding Determinants Using Row Operations

Theorems 6.1.23 - 6.1.25 can be used to find determinants using row operations. As pointed out
above, the method of Laplace expansion will not be practical for any matrix of large size. Here is
an example in which all the row operations are used.

Example 6.1.28 Find the determinant of the matrix

A =




1 2 3 4
5 1 2 3
4 5 4 3
2 2 −4 5



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Replace the second row by (−5) times the first row added to it. Then replace the third row by
(−4) times the first row added to it. Finally, replace the fourth row by (−2) times the first row
added to it. This yields the matrix

B =




1 2 3 4
0 −9 −13 −17
0 −3 −8 −13
0 −2 −10 −3




and from Theorem 6.1.23, it has the same determinant as A. Now using other row operations,
det (B) =

(−1
3

)
det (C) where

C =




1 2 3 4
0 0 11 22
0 −3 −8 −13
0 6 30 9


 .

The second row was replaced by (−3) times the third row added to the second row. By Theorem
6.1.23 this didn’t change the value of the determinant. Then the last row was multiplied by (−3) .
By Theorem 6.1.19 the resulting matrix has a determinant which is (−3) times the determinant of
the un-multiplied matrix. Therefore, we multiplied by −1/3 to retain the correct value. Now replace
the last row with 2 times the third added to it. This does not change the value of the determinant
by Theorem 6.1.23. Finally switch the third and second rows. This causes the determinant to be
multiplied by (−1) . Thus det (C) = − det (D) where

D =




1 2 3 4
0 −3 −8 −13
0 0 11 22
0 0 14 −17




You could do more row operations or you could note that this can be easily expanded along the first
column followed by expanding the 3× 3 matrix which results along its first column. Thus

det (D) = 1 (−3)

∣∣∣∣
11 22
14 −17

∣∣∣∣ = 1485

and so det (C) = −1485 and det (A) = det (B) =
(−1

3

)
(−1485) = 495.

Example 6.1.29 Find the determinant of the matrix



1 2 3 2
1 −3 2 1
2 1 2 5
3 −4 1 2




Replace the second row by (−1) times the first row added to it. Next take −2 times the first row
and add to the third and finally take −3 times the first row and add to the last row. This yields




1 2 3 2
0 −5 −1 −1
0 −3 −4 1
0 −10 −8 −4


 .

By Theorem 6.1.23 this matrix has the same determinant as the original matrix. Remember you can
work with the columns also. Take −5 times the last column and add to the second column. This
yields 



1 −8 3 2
0 0 −1 −1
0 −8 −4 1
0 10 −8 −4



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By Theorem 6.1.25 this matrix has the same determinant as the original matrix. Now take (−1)
times the third row and add to the top row. This gives.




1 0 7 1
0 0 −1 −1
0 −8 −4 1
0 10 −8 −4




which by Theorem 6.1.23 has the same determinant as the original matrix. Lets expand it now along
the first column. This yields the following for the determinant of the original matrix.

det




0 −1 −1
−8 −4 1
10 −8 −4




which equals

8 det

(
−1 −1
−8 −4

)
+ 10det

(
−1 −1
−4 1

)
= −82

We suggest you do not try to be fancy in using row operations. That is, stick mostly to the one
which replaces a row or column with a multiple of another row or column added to it. Also note
there is no way to check your answer other than working the problem more than one way. To be
sure you have gotten it right you must do this.

6.2 Applications

6.2.1 A Formula For The Inverse

The definition of the determinant in terms of Laplace expansion along a row or column also provides
a way to give a formula for the inverse of a matrix. Recall the definition of the inverse of a matrix
in Definition 5.1.28 on Page 87. Also recall the definition of the cofactor matrix given in Definition
6.1.12 on Page 102. This cofactor matrix was just the matrix which results from replacing the ijth

entry of the matrix with the ijth cofactor.
The following theorem says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate or
sometimes the classical adjoint of the matrix A. In other words, A−1 is equal to one divided by
the determinant of A times the adjugate matrix of A. This is what the following theorem says with
more precision.

Theorem 6.2.1 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Example 6.2.2 Find the inverse of the matrix

A =




1 2 3
3 0 1
1 2 1




First find the determinant of this matrix. Using Theorems 6.1.23 - 6.1.25 on Page 104, the
determinant of this matrix equals the determinant of the matrix




1 2 3
0 −6 −8
0 0 −2



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which equals 12. The cofactor matrix of A is




−2 −2 6
4 −2 0
2 8 −6


 .

Each entry of A was replaced by its cofactor. Therefore, from the above theorem, the inverse of A
should equal

1

12




−2 −2 6
4 −2 0
2 8 −6




T

=




− 1
6

1
3

1
6

− 1
6 − 1

6
2
3

1
2 0 − 1

2



.

Does it work? You should check to see if it does. When the matrices are multiplied




− 1
6

1
3

1
6

− 1
6 − 1

6
2
3

1
2 0 − 1

2







1 2 3
3 0 1
1 2 1


 =




1 0 0
0 1 0
0 0 1




and so it is correct.

Example 6.2.3 Find the inverse of the matrix

A =




1
2 0 1

2

− 1
6

1
3 − 1

2

− 5
6

2
3 − 1

2




First find its determinant. This determinant is 1
6 . The inverse is therefore equal to

6




∣∣∣∣∣∣

1
3 − 1

2

2
3 − 1

2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

− 1
6 − 1

2

− 5
6 − 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

− 1
6

1
3

− 5
6

2
3

∣∣∣∣∣∣

−

∣∣∣∣∣∣

0 1
2

2
3 − 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

1
2

1
2

− 5
6 − 1

2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

1
2 0

− 5
6

2
3

∣∣∣∣∣∣
∣∣∣∣∣∣

0 1
2

1
3 − 1

2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

1
2

1
2

− 1
6 − 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

1
2 0

− 1
6

1
3

∣∣∣∣∣∣




T

.

Expanding all the 2× 2 determinants this yields

6




1
6

1
3

1
6

1
3

1
6 − 1

3

− 1
6

1
6

1
6




T

=




1 2 −1
2 1 1
1 −2 1



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Always check your work.




1 2 −1
2 1 1
1 −2 1







1
2 0 1

2

− 1
6

1
3 − 1

2

− 5
6

2
3 − 1

2




=




1 0 0
0 1 0
0 0 1




and so we got it right. If the result of multiplying these matrices had been something other than
the identity matrix, you would know there was an error. When this happens, you need to search for
the mistake if you are interested in getting the right answer. A common mistake is to forget to take
the transpose of the cofactor matrix.

Proof of Theorem 6.2.1: From the definition of the determinant in terms of expansion along
a column, and letting (air) = A, if det (A) ̸= 0,

n∑

i=1

air cof (A)ir det(A)
−1 = det(A) det(A)−1 = 1.

Now consider
n∑

i=1

air cof (A)ik det(A)
−1

when k ̸= r. Replace the kth column with the rth column to obtain a matrix Bk whose determinant
equals zero by Theorem 6.1.21. However, expanding this matrix Bk along the kth column yields

0 = det (Bk) det (A)
−1

=
n∑

i=1

air cof (A)ik det (A)
−1

Summarizing,
n∑

i=1

air cof (A)ik det (A)
−1

= δrk ≡
{

1 if r = k
0 if r ̸= k

.

Now
n∑

i=1

air cof (A)ik =

n∑

i=1

air cof (A)
T
ki

which is the krth entry of cof (A)
T
A. Therefore,

cof (A)
T

det (A)
A = I. (6.2)

Using the other formula in Definition 6.1.13, and similar reasoning,

n∑

j=1

arj cof (A)kj det (A)
−1

= δrk

Now
n∑

j=1

arj cof (A)kj =
n∑

j=1

arj cof (A)
T
jk

which is the rkth entry of A cof (A)
T
. Therefore,

A
cof (A)

T

det (A)
= I, (6.3)
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and it follows from (6.2) and (6.3) that A−1 =
(
a−1
ij

)
, where

a−1
ij = cof (A)ji det (A)

−1
.

In other words,

A−1 =
cof (A)

T

det (A)
.

Now suppose A−1 exists. Then by Theorem 6.1.26,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) ̸= 0. �

This way of finding inverses is especially useful in the case where it is desired to find the inverse
of a matrix whose entries are functions.

Example 6.2.4 Suppose

A (t) =




et 0 0
0 cos t sin t
0 − sin t cos t




Show that A (t)
−1

exists and then find it.

First note det (A (t)) = et ̸= 0 so A (t)
−1

exists. The cofactor matrix is

C (t) =




1 0 0
0 et cos t et sin t
0 −et sin t et cos t




and so the inverse is

1

et




1 0 0
0 et cos t et sin t
0 −et sin t et cos t




T

=




e−t 0 0
0 cos t − sin t
0 sin t cos t


 .

6.2.2 Cramer’s Rule

This formula for the inverse also implies a famous procedure known as Cramer’s rule. Cramer’s
rule gives a formula for the solutions, x, to a system of equations, Ax = y in the special case that A
is a square matrix. Note this rule does not apply if you have a system of equations in which there
is a different number of equations than variables.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given above.
Using this formula,

xi =

n∑

j=1

a−1
ij yj =

n∑

j=1

1

det (A)
cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det




∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector (y1 · · · ·, yn)T , and the determinant
of this modified matrix is taken and divided by det (A). This formula is known as Cramer’s rule.
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Procedure 6.2.5 Suppose A is an n× n matrix and it is desired to solve the system Ax = y,y =
(y1, · · · , yn)T for x = (x1, · · · , xn)T . Then Cramer’s rule says

xi =
detAi

detA

where Ai is obtained from A by replacing the ith column of A with the column

(y1, · · · , yn)T .

Example 6.2.6 Find x, y if




1 2 1
3 2 1
2 −3 2






x
y
z


 =




1
2
3


 .

From Cramer’s rule,

x =

∣∣∣∣∣∣

1 2 1
2 2 1
3 −3 2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1
3 2 1
2 −3 2

∣∣∣∣∣∣

=
1

2

Now to find y,

y =

∣∣∣∣∣∣

1 1 1
3 2 1
2 3 2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1
3 2 1
2 −3 2

∣∣∣∣∣∣

= −1

7

z =

∣∣∣∣∣∣

1 2 1
3 2 2
2 −3 3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 2 1
3 2 1
2 −3 2

∣∣∣∣∣∣

=
11

14

You see the pattern. For large systems Cramer’s rule is less than useful if you want to find an
answer. This is because to use it you must evaluate determinants. However, you have no practical
way to evaluate determinants for large matrices other than row operations and if you are using row
operations, you might just as well use them to solve the system to begin with. It will be a lot less
trouble. Nevertheless, there are situations in which Cramer’s rule is useful.

Example 6.2.7 Solve for z if




1 0 0
0 et cos t et sin t
0 −et sin t et cos t






x
y
z


 =




1
t
t2



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You could do it by row operations but it might be easier in this case to use Cramer’s rule because
the matrix of coefficients does not consist of numbers but of functions. Thus

z =

∣∣∣∣∣∣

1 0 1
0 et cos t t
0 −et sin t t2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 0 0
0 et cos t et sin t
0 −et sin t et cos t

∣∣∣∣∣∣

= t ((cos t) t+ sin t) e−t.

You end up doing this sort of thing sometimes in ordinary differential equations in the method of
variation of parameters.

6.3 Exercises

1. Find the determinants of the following matrices.

(a)




1 2 3
3 2 2
0 9 8


 (The answer is 31.)

(b)




4 3 2
1 7 8
3 −9 3


(The answer is 375.)

(c)




1 2 3 2
1 3 2 3
4 1 5 0
1 2 1 2


, (The answer is −2.)

2. Find the following determinant by expanding along the first row and second column.

∣∣∣∣∣∣

1 2 1
2 1 3
2 1 1

∣∣∣∣∣∣

3. Find the following determinant by expanding along the first column and third row.

∣∣∣∣∣∣

1 2 1
1 0 1
2 1 1

∣∣∣∣∣∣

4. Find the following determinant by expanding along the second row and first column.

∣∣∣∣∣∣

1 2 1
2 1 3
2 1 1

∣∣∣∣∣∣

5. Compute the determinant by cofactor expansion. Pick the easiest row or column to use.

∣∣∣∣∣∣∣∣

1 0 0 1
2 1 1 0
0 0 0 2
2 1 3 1

∣∣∣∣∣∣∣∣
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6. Find the determinant using row operations.
∣∣∣∣∣∣

1 2 1
2 3 2
−4 1 2

∣∣∣∣∣∣

7. Find the determinant using row operations.
∣∣∣∣∣∣

2 1 3
2 4 2
1 4 −5

∣∣∣∣∣∣

8. Find the determinant using row operations.
∣∣∣∣∣∣∣∣

1 2 1 2
3 1 −2 3
−1 0 3 1
2 3 2 −2

∣∣∣∣∣∣∣∣

9. Find the determinant using row operations.
∣∣∣∣∣∣∣∣

1 4 1 2
3 2 −2 3
−1 0 3 3
2 1 2 −2

∣∣∣∣∣∣∣∣

10. Verify an example of each property of determinants found in Theorems 6.1.23 - 6.1.25 for 2×2
matrices.

11. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
a c
b d

)

12. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
c d
a b

)

13. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
a b

a+ c b+ d

)

14. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
a b
2c 2d

)

15. An operation is done to get from the first matrix to the second. Identify what was done and
tell how it will affect the value of the determinant.

(
a b
c d

)
,

(
b a
d c

)
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16. Let A be an r × r matrix and suppose there are r − 1 rows (columns) such that all rows
(columns) are linear combinations of these r − 1 rows (columns). Show det (A) = 0.

17. Show det (aA) = an det (A) where here A is an n× n matrix and a is a scalar.

18. Illustrate with an example of 2 × 2 matrices that the determinant of a product equals the
product of the determinants.

19. Is it true that det (A+B) = det (A) + det (B)? If this is so, explain why it is so and if it is
not so, give a counter example.

20. An n× n matrix is called nilpotent if for some positive integer, k it follows Ak = 0. If A is a
nilpotent matrix and k is the smallest possible integer such that Ak = 0, what are the possible
values of det (A)?

21. A matrix is said to be orthogonal if ATA = I. Thus the inverse of an orthogonal matrix is
just its transpose. What are the possible values of det (A) if A is an orthogonal matrix?

22. Fill in the missing entries to make the matrix orthogonal as in Problem 21.




−1√
2

1√
6

√
12
6

1√
2 √

6
3



.

23. Let A and B be two n×n matrices. A ∼ B (A is similar to B) means there exists an invertible
matrix S such that A = S−1BS. Show that if A ∼ B, then B ∼ A. Show also that A ∼ A and
that if A ∼ B and B ∼ C, then A ∼ C.

24. In the context of Problem 23 show that if A ∼ B, then det (A) = det (B) .

25. Two n × n matrices, A and B, are similar if B = S−1AS for some invertible n × n matrix
S. Show that if two matrices are similar, they have the same characteristic polynomials. The
characteristic polynomial of an n× n matrix M is the polynomial, det (λI −M) .

26. Tell whether the statement is true or false.

(a) If A is a 3 × 3 matrix with a zero determinant, then one column must be a multiple of
some other column.

(b) If any two columns of a square matrix are equal, then the determinant of the matrix
equals zero.

(c) For A and B two n× n matrices, det (A+B) = det (A) + det (B) .

(d) For A an n× n matrix, det (3A) = 3 det (A)

(e) If A−1 exists then det
(
A−1

)
= det (A)

−1
.

(f) If B is obtained by multiplying a single row of A by 4 then det (B) = 4 det (A) .

(g) For A an n× n matrix, det (−A) = (−1)
n
det (A) .

(h) If A is a real n× n matrix, then det
(
ATA

)
≥ 0.

(i) Cramer’s rule is useful for finding solutions to systems of linear equations in which there
is an infinite set of solutions.

(j) If Ak = 0 for some positive integer, k, then det (A) = 0.

(k) If Ax = 0 for some x ̸= 0, then det (A) = 0.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



114 DETERMINANTS

27. Use Cramer’s rule to find the solution to

x+ 2y = 1
2x− y = 2

28. Use Cramer’s rule to find the solution to

x+ 2y + z = 1
2x− y − z = 2
x+ z = 1

29. Here is a matrix, 


1 2 3
0 2 1
3 1 0




Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

30. Here is a matrix, 


1 2 0
0 2 1
3 1 1




Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

31. Here is a matrix, 


1 3 3
2 4 1
0 1 1




Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

32. Here is a matrix, 


1 2 3
0 2 1
2 6 7




Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.

33. Here is a matrix, 


1 0 3
1 0 1
3 1 0




Determine whether the matrix has an inverse by finding whether the determinant is non zero.
If the determinant is nonzero, find the inverse using the formula for the inverse which involves
the cofactor matrix.
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34. Use the formula for the inverse in terms of the cofactor matrix to find if possible the inverses
of the matrices (

1 1
1 2

)
,




1 2 3
0 2 1
4 1 1


 ,




1 2 1
2 3 0
0 1 2


 .

If the inverse does not exist, explain why.

35. Here is a matrix, 


1 0 0
0 cos t − sin t
0 sin t cos t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

36. Here is a matrix, 


1 t t2

0 1 2t
t 0 2




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

37. Here is a matrix, 


et cosh t sinh t
et sinh t cosh t
et cosh t sinh t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

38. Show that if det (A) ̸= 0 for A an n× n matrix, it follows that if Ax = 0, then x = 0.

39. Suppose A,B are n×n matrices and that AB = I. Show that then BA = I. Hint: You might
do something like this: First explain why det (A) , det (B) are both nonzero. Then (AB)A = A
and then show BA (BA− I) = 0. From this use what is given to conclude A (BA− I) = 0.
Then use Problem 38.

40. Use the formula for the inverse in terms of the cofactor matrix to find the inverse of the matrix

A =




et 0 0
0 et cos t et sin t
0 et cos t− et sin t et cos t+ et sin t


 .

41. Find the inverse if it exists of the matrix



et cos t sin t
et − sin t cos t
et − cos t − sin t


 .

42. Here is a matrix,




et e−t cos t e−t sin t
et −e−t cos t− e−t sin t −e−t sin t+ e−t cos t
et 2e−t sin t −2e−t cos t




Does there exist a value of t for which this matrix fails to have an inverse? Explain.

43. Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all elements of
the main diagonal are non zero. Is it true that A−1 will also be upper triangular? Explain. Is
everything the same for lower triangular matrices?
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44. If A,B, and C are each n × n matrices and ABC is invertible, why are each of A,B, and C
invertible.

45. Let F (t) = det

(
a (t) b (t)
c (t) d (t)

)
. Verify

F ′ (t) = det

(
a′ (t) b′ (t)
c (t) d (t)

)
+ det

(
a (t) b (t)
c′ (t) d′ (t)

)
.

Now suppose

F (t) = det




a (t) b (t) c (t)
d (t) e (t) f (t)
g (t) h (t) i (t)


 .

Use Laplace expansion and the first part to verify F ′ (t) =

det




a′ (t) b′ (t) c′ (t)
d (t) e (t) f (t)
g (t) h (t) i (t)


+ det




a (t) b (t) c (t)
d′ (t) e′ (t) f ′ (t)
g (t) h (t) i (t)




+det




a (t) b (t) c (t)
d (t) e (t) f (t)
g′ (t) h′ (t) i′ (t)


 .

Conjecture a general result valid for n × n matrices and explain why it will be true. Can a
similar thing be done with the columns?

46. Let Ly = y(n) + an−1 (x) y
(n−1) + · · · + a1 (x) y

′ + a0 (x) y where the ai are given continuous
functions defined on a closed interval, (a, b) and y is some function which has n derivatives so
it makes sense to write Ly. Suppose Lyk = 0 for k = 1, 2, · · · , n. The Wronskian of these
functions, yi is defined as

W (y1, · · · , yn) (x) ≡ det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)




Show that for W (x) =W (y1, · · · , yn) (x) to save space,

W ′ (x) = det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n)
1 (x) · · · y

(n)
n (x)


 .

Now use the differential equation, Ly = 0 which is satisfied by each of these functions, yi
and properties of determinants presented above to verify that W ′ + an−1 (x)W = 0. Give an
explicit solution of this linear differential equation, Abel’s formula, and use your answer to
verify that the Wronskian of these solutions to the equation, Ly = 0 either vanishes identically
on (a, b) or never. Hint: To solve the differential equation, let A′ (x) = an−1 (x) and multiply
both sides of the differential equation by eA(x) and then argue the left side is the derivative of
something.

47. Find the following determinants.

(a) det




2 2 + 2i 3− 3i
2− 2i 5 1− 7i
3 + 3i 1 + 7i 16



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(b) det




10 2 + 6i 8− 6i
2− 6i 9 1− 7i
8 + 6i 1 + 7i 17



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The Mathematical Theory Of

Determinants∗

7.1 The Function sgnn

This material is definitely not for the faint of heart. It is only for people who want to see everything
proved. It is a fairly complete and unusually elementary treatment of the subject. There will be
some repetition between this section and the earlier section on determinants. The main purpose
is to give all the missing proofs. Two books which give a good introduction to determinants are
Apostol [1] and Rudin [13]. A recent book which also has a good introduction is Baker [2]. Most
linear algebra books do not do an honest job presenting this topic.

It is easiest to give a different definition of the determinant which is clearly well defined and then
prove the earlier one in terms of Laplace expansion. Let (i1, · · · , in) be an ordered list of numbers
from {1, · · · , n} . This means the order is important so (1, 2, 3) and (2, 1, 3) are different.

The following Lemma will be essential in the definition of the determinant.

Lemma 7.1.1 There exists a unique function, sgnn which maps each list of numbers from {1, · · · , n}
to one of the three numbers, 0, 1, or −1 which also has the following properties.

sgnn (1, · · · , n) = 1 (7.1)

sgnn (i1, · · · , p, · · · , q, · · · , in) = − sgnn (i1, · · · , q, · · · , p, · · · , in) (7.2)

In words, the second property states that if two of the numbers are switched, the value of the function
is multiplied by −1. Also, in the case where n > 1 and {i1, · · · , in} = {1, · · · , n} so that every number
from {1, · · · , n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) ≡

(−1)
n−θ

sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (7.3)

where n = iθ in the ordered list, (i1, · · · , in) .

Proof: To begin with, it is necessary to show the existence of such a function. This is clearly true
if n = 1. Define sgn1 (1) ≡ 1 and observe that it works. No switching is possible. In the case where
n = 2, it is also clearly true. Let sgn2 (1, 2) = 1 and sgn2 (2, 1) = 0 while sgn2 (2, 2) = sgn2 (1, 1) = 0
and verify it works. Assuming such a function exists for n, sgnn+1 will be defined in terms of sgnn . If
there are any repeated numbers in (i1, · · · , in+1) , sgnn+1 (i1, · · · , in+1) ≡ 0. If there are no repeats,
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then n+ 1 appears somewhere in the ordered list. Let θ be the position of the number n+ 1 in the
list. Thus, the list is of the form (i1, · · · , iθ−1, n+ 1, iθ+1, · · · , in+1) . From (7.3) it must be that

sgnn+1 (i1, · · · , iθ−1, n+ 1, iθ+1, · · · , in+1) ≡

(−1)
n+1−θ

sgnn (i1, · · · , iθ−1, iθ+1, · · · , in+1) .

It is necessary to verify this satisfies (7.1) and (7.2) with n replaced with n+1. The first of these is
obviously true because

sgnn+1 (1, · · · , n, n+ 1) ≡ (−1)
n+1−(n+1)

sgnn (1, · · · , n) = 1.

If there are repeated numbers in (i1, · · · , in+1) , then it is obvious (7.2) holds because both sides
would equal zero from the above definition. It remains to verify (7.2) in the case where there are no
numbers repeated in (i1, · · · , in+1) . Consider

sgnn+1

(
i1, · · · ,

r
p, · · · , sq, · · · , in+1

)
,

where the r above the p indicates the number, p is in the rth position and the s above the q indicates
that the number q is in the sth position. Suppose first that r < θ < s. Then

sgnn+1

(
i1, · · · ,

r
p, · · · ,

θ
n+ 1, · · · , sq, · · · , in+1

)
≡

(−1)
n+1−θ

sgnn

(
i1, · · · ,

r
p, · · · , s−1

q , · · · , in+1

)

while

sgnn+1

(
i1, · · · ,

r
q, · · · ,

θ
n+ 1, · · · , sp, · · · , in+1

)
=

(−1)
n+1−θ

sgnn

(
i1, · · · ,

r
q, · · · , s−1

p , · · · , in+1

)

and so, by induction, a switch of p and q introduces a minus sign in the result. Similarly, if θ > s
or if θ < r it also follows that (7.2) holds. The interesting case is when θ = r or θ = s. Consider the
case where θ = r and note the other case is entirely similar.

sgnn+1

(
i1, · · · ,

r
n+ 1, · · · , sq, · · · , in+1

)
=

(−1)
n+1−r

sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)
(7.4)

while

sgnn+1

(
i1, · · · ,

r
q, · · · ,

s
n+ 1, · · · , in+1

)
=

(−1)
n+1−s

sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
. (7.5)

By making s− 1− r switches, move the q which is in the s− 1th position in (7.4) to the rth position
in (7.5). By induction, each of these switches introduces a factor of −1 and so

sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)
= (−1)

s−1−r
sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
.

Therefore,

sgnn+1

(
i1, · · · ,

r
n+ 1, · · · , sq, · · · , in+1

)
= (−1)

n+1−r
sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)
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= (−1)
n+1−r

(−1)
s−1−r

sgnn

(
i1, · · · ,

r
q, · · · , in+1

)

= (−1)
n+s

sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
= (−1)

2s−1
(−1)

n+1−s
sgnn

(
i1, · · · ,

r
q, · · · , in+1

)

= − sgnn+1

(
i1, · · · ,

r
q, · · · ,

s
n+ 1, · · · , in+1

)
.

This proves the existence of the desired function.
To see this function is unique, note that you can obtain any ordered list of distinct numbers from

a sequence of switches. If there exist two functions, f and g both satisfying (7.1) and (7.2), you
could start with f (1, · · · , n) = g (1, · · · , n) and applying the same sequence of switches, eventually
arrive at f (i1, · · · , in) = g (i1, · · · , in) . If any numbers are repeated, then (7.2) gives both functions
are equal to zero for that ordered list. �

In what follows sgn will often be used rather than sgnn because the context supplies the appro-
priate n.

7.2 The Determinant

Definition 7.2.1 Let f be a function which has the set of ordered lists of numbers from {1, · · · , n}
as its domain. Define ∑

(k1,··· ,kn)

f (k1 · · · kn)

to be the sum of all the f (k1 · · · kn) for all possible choices of ordered lists (k1, · · · , kn) of numbers
of {1, · · · , n} . For example,

∑

(k1,k2)

f (k1, k2) = f (1, 2) + f (2, 1) + f (1, 1) + f (2, 2) .

7.2.1 The Definition

Definition 7.2.2 Let (aij) = A denote an n×n matrix. The determinant of A, denoted by det (A)
is defined by

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · ankn

where the sum is taken over all ordered lists of numbers from {1, · · · , n}. Note it suffices to take the
sum over only those ordered lists in which there are no repeats because if there are, sgn (k1, · · · , kn) =
0 and so that term contributes 0 to the sum.

7.2.2 Permuting Rows Or Columns

Let A be an n× n matrix, A = (aij) and let (r1, · · · , rn) denote an ordered list of n numbers from
{1, · · · , n}. Let A (r1, · · · , rn) denote the matrix whose kth row is the rk row of the matrix A. Thus

det (A (r1, · · · , rn)) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1
· · · arnkn

(7.6)

and
A (1, · · · , n) = A.

Proposition 7.2.3 Let
(r1, · · · , rn)
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be an ordered list of numbers from {1, · · · , n}. Then

sgn (r1, · · · , rn) det (A)

=
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1
· · · arnkn

(7.7)

= det (A (r1, · · · , rn)) . (7.8)

Proof: Let (1, · · · , n) = (1, · · · , r, · · · s, · · · , n) so r < s.

det (A (1, · · · , r, · · · , s, · · · , n)) = (7.9)

∑

(k1,··· ,kn)

sgn (k1, · · · , kr, · · · , ks, · · · , kn) a1k1
· · · arkr

· · · asks
· · · ankn

,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,··· ,kn)

sgn (k1, · · · , ks, · · · , kr, · · · , kn) a1k1
· · · arks

· · · askr
· · · ankn

=
∑

(k1,··· ,kn)

− sgn


k1, · · · ,

These got switched︷ ︸︸ ︷
kr, · · · , ks , · · · , kn


 a1k1

· · · askr
· · · arks

· · · ankn

= −det (A (1, · · · , s, · · · , r, · · · , n)) . (7.10)

Consequently,
det (A (1, · · · , s, · · · , r, · · · , n)) =

− det (A (1, · · · , r, · · · , s, · · · , n)) = − det (A)

Now letting A (1, · · · , s, · · · , r, · · · , n) play the role of A, and continuing in this way, switching pairs
of numbers,

det (A (r1, · · · , rn)) = (−1)
p
det (A)

where it took p switches to obtain(r1, · · · , rn) from (1, · · · , n). By Lemma 7.1.1, this implies

det (A (r1, · · · , rn)) = (−1)
p
det (A) = sgn (r1, · · · , rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the ordered list,
(r1, · · · , rn). However, if there is a repeat, say the rth row equals the sth row, then the reasoning of
(7.9) -(7.10) shows that A (r1, · · · , rn) = 0 and also sgn (r1, · · · , rn) = 0 so the formula holds in this
case also. �

Observation 7.2.4 There are n! ordered lists of distinct numbers from {1, · · · , n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For each of
these choices, there are n − 1 choices for the second. Thus there are n (n− 1) ways to fill the first
two slots. Then for each of these ways there are n− 2 choices left for the third slot. Continuing this
way, there are n! ordered lists of distinct numbers from {1, · · · , n} as stated in the observation.
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7.2.3 A Symmetric Definition

With the above, it is possible to give a more symmetric description of the determinant from which
it will follow that det (A) = det

(
AT
)
.

Corollary 7.2.5 The following formula for det (A) is valid.

det (A) =
1

n!
·

∑

(r1,··· ,rn)

∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1
· · · arnkn

. (7.11)

And also det
(
AT
)
= det (A) where AT is the transpose of A. (Recall that for AT =

(
aTij
)
, aTij = aji.)

Proof: From Proposition 7.2.3, if the ri are distinct,

det (A) =
∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1
· · · arnkn

.

Summing over all ordered lists, (r1, · · · , rn) where the ri are distinct, (If the ri are not distinct,
sgn (r1, · · · , rn) = 0 and so there is no contribution to the sum.)

n! det (A) =

∑

(r1,··· ,rn)

∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1
· · · arnkn

.

This proves the corollary since the formula gives the same number for A as it does for AT . �

7.2.4 The Alternating Property Of The Determinant

Corollary 7.2.6 If two rows or two columns in an n× n matrix A, are switched, the determinant
of the resulting matrix equals (−1) times the determinant of the original matrix. If A is an n × n
matrix in which two rows are equal or two columns are equal then det (A) = 0. Suppose the ith row
of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = x det (A1) + y det (A2)

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows of A1

and A2 coinciding with those of A. In other words, det is a linear function of each row A. The same
is true with the word “row” replaced with the word “column”.

Proof: By Proposition 7.2.3 when two rows are switched, the determinant of the resulting matrix
is (−1) times the determinant of the original matrix. By Corollary 7.2.5 the same holds for columns
because the columns of the matrix equal the rows of the transposed matrix. Thus if A1 is the matrix
obtained from A by switching two columns,

det (A) = det
(
AT
)
= − det

(
AT

1

)
= − det (A1) .

If A has two equal columns or two equal rows, then switching them results in the same matrix.
Therefore, det (A) = − det (A) and so det (A) = 0.

It remains to verify the last assertion.

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · (xaki

+ ybki
) · · · ankn
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= x
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · aki

· · · ankn

+y
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · bki

· · · ankn

≡ x det (A1) + y det (A2) .

The same is true of columns because det
(
AT
)
= det (A) and the rows of AT are the columns of A.

�

7.2.5 Linear Combinations And Determinants

Definition 7.2.7 A vector w, is a linear combination of the vectors {v1, · · · ,vr} if there exists
scalars, c1, · · · cr such that w =

∑r
k=1 ckvk. This is the same as saying

w ∈ span {v1, · · · ,vr} .

The following corollary is also of great use.

Corollary 7.2.8 Suppose A is an n× n matrix and some column (row) is a linear combination of
r other columns (rows). Then det (A) = 0.

Proof: Let A =
(
a1 · · · an

)
be the columns of A and suppose the condition that one

column is a linear combination of r of the others is satisfied. Then by using Corollary 7.2.6 you may
rearrange the columns to have the nth column a linear combination of the first r columns. Thus
an =

∑r
k=1 ckak and so

det (A) = det
(
a1 · · · ar · · · an−1

∑r
k=1 ckak

)
.

By Corollary 7.2.6

det (A) =
r∑

k=1

ck det
(
a1 · · · ar · · · an−1 ak

)
= 0.

The case for rows follows from the fact that det (A) = det
(
AT
)
. �

7.2.6 The Determinant Of A Product

Recall the following definition of matrix multiplication.

Definition 7.2.9 If A and B are n× n matrices, A = (aij) and B = (bij), AB = (cij) where

cij ≡
n∑

k=1

aikbkj .

One of the most important rules about determinants is that the determinant of a product equals
the product of the determinants.

Theorem 7.2.10 Let A and B be n× n matrices. Then

det (AB) = det (A) det (B) .
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Proof: Let cij be the ijth entry of AB. Then by Proposition 7.2.3,

det (AB) =

∑

(k1,··· ,kn)

sgn (k1, · · · , kn) c1k1
· · · cnkn

=
∑

(k1,··· ,kn)

sgn (k1, · · · , kn)
(
∑

r1

a1r1br1k1

)
· · ·
(
∑

rn

anrnbrnkn

)

=
∑

(r1··· ,rn)

∑

(k1,··· ,kn)

sgn (k1, · · · , kn) br1k1
· · · brnkn

(a1r1 · · · anrn)

=
∑

(r1··· ,rn)
sgn (r1 · · · rn) a1r1 · · · anrn det (B) = det (A) det (B) . �

7.2.7 Cofactor Expansions

Lemma 7.2.11 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
(7.12)

or

M =

(
A 0

∗ a

)
(7.13)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a column or a row
having length n − 1 and the 0 denotes either a column or a row of length n − 1 consisting entirely
of zeros. Then

det (M) = a det (A) .

Proof: Denote M by (mij) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while in the
second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det (M) ≡
∑

(k1,··· ,kn)

sgnn (k1, · · · , kn)m1k1
· · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · · , kn) then using the earlier conventions
used to prove Lemma 7.1.1, det (M) equals

∑

(k1,··· ,kn)

(−1)
n−θ

sgnn−1

(
k1, · · · , kθ−1,

θ

kθ+1, · · · ,
n−1

kn

)
m1k1

· · ·mnkn

Now suppose (7.13). Then if kn ̸= n, the term involving mnkn
in the above expression equals zero.

Therefore, the only terms which survive are those for which θ = n or in other words, those for which
kn = n. Therefore, the above expression reduces to

a
∑

(k1,··· ,kn−1)

sgnn−1 (k1, · · · kn−1)m1k1
· · ·m(n−1)kn−1

= a det (A) .

To get the assertion in the situation of (7.12) use Corollary 7.2.5 and (7.13) to write

det (M) = det
(
MT

)
= det

((
AT 0

∗ a

))
= a det

(
AT
)
= a det (A) . �

In terms of the theory of determinants, arguably the most important idea is that of Laplace
expansion along a row or a column. This will follow from the above definition of a determinant.
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Definition 7.2.12 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor matrix,
cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the jth column of A,
take the determinant of the (n− 1)× (n− 1) matrix which results, (This is called the ijth minor of

A. ) and then multiply this number by (−1)
i+j

. To make the formulas easier to remember, cof (A)ij
will denote the ijth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outrageous
totally unjustified assertion was made that the same number would be obtained by expanding the
determinant along any row or column. The following theorem proves this assertion.

Theorem 7.2.13 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =
n∑

i=1

aij cof (A)ij . (7.14)

The first formula consists of expanding the determinant along the ith row and the second expands
the determinant along the jth column.

Proof: Let (ai1, · · · , ain) be the ith row of A. Let Bj be the matrix obtained from A by leaving
every row the same except the ith row which in Bj equals

(0, · · · , 0, aij , 0, · · · , 0) .

Then by Corollary 7.2.6,

det (A) =
n∑

j=1

det (Bj)

Denote by Aij the (n− 1)× (n− 1) matrix obtained by deleting the ith row and the jth column of

A. Thus cof (A)ij ≡ (−1)
i+j

det
(
Aij
)
. At this point, recall that from Proposition 7.2.3, when two

rows or two columns in a matrix M, are switched, this results in multiplying the determinant of the
old matrix by −1 to get the determinant of the new matrix. Therefore, by Lemma 7.2.11,

det (Bj) = (−1)
n−j

(−1)
n−i

det

((
Aij ∗
0 aij

))

= (−1)
i+j

det

((
Aij ∗
0 aij

))
= aij cof (A)ij .

Therefore,

det (A) =

n∑

j=1

aij cof (A)ij

which is the formula for expanding det (A) along the ith row. Also,

det (A) = det
(
AT
)
=

n∑

j=1

aTij cof
(
AT
)
ij

=
n∑

j=1

aji cof (A)ji

which is the formula for expanding det (A) along the ith column. �
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7.2.8 Formula For The Inverse

Note that this gives an easy way to write a formula for the inverse of an n× n matrix.

Theorem 7.2.14 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Proof: By Theorem 7.2.13 and letting (air) = A, if det (A) ̸= 0,

n∑

i=1

air cof (A)ir det(A)
−1 = det(A) det(A)−1 = 1.

Now consider
n∑

i=1

air cof (A)ik det(A)
−1

when k ̸= r. Replace the kth column with the rth column to obtain a matrix Bk whose determinant
equals zero by Corollary 7.2.6. However, expanding this matrix along the kth column yields

0 = det (Bk) det (A)
−1

=

n∑

i=1

air cof (A)ik det (A)
−1

Summarizing,
n∑

i=1

air cof (A)ik det (A)
−1

= δrk.

Using the other formula in Theorem 7.2.13, and similar reasoning,

n∑

j=1

arj cof (A)kj det (A)
−1

= δrk

This proves that if det (A) ̸= 0, then A−1 exists with A−1 =
(
a−1
ij

)
, where

a−1
ij = cof (A)ji det (A)

−1
.

Now suppose A−1 exists. Then by Theorem 7.2.10,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) ̸= 0. �

The next corollary points out that if an n× n matrix A has a right or a left inverse, then it has
an inverse.

Corollary 7.2.15 Let A be an n× n matrix and suppose there exists an n× n matrix B such that
BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n× n matrix such that AC = I,
then A−1 exists and A−1 = C.

Proof: Since BA = I, Theorem 7.2.10 implies

detB detA = 1

and so detA ̸= 0. Therefore from Theorem 7.2.14, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1

)
= BI = B.
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The case where CA = I is handled similarly. �

The conclusion of this corollary is that left inverses, right inverses and inverses are all the same
in the context of n× n matrices.

Theorem 7.2.14 says that to find the inverse, take the transpose of the cofactor matrix and
divide by the determinant. The transpose of the cofactor matrix is called the adjugate or sometimes
the classical adjoint of the matrix A. It is an abomination to call it the adjoint although you do
sometimes see it referred to in this way. In words, A−1 is equal to one over the determinant of A
times the adjugate matrix of A.

7.2.9 Cramer’s Rule

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given above.
Using this formula,

xi =

n∑

j=1

a−1
ij yj =

n∑

j=1

1

det (A)
cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det




∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector (y1 · · · ·, yn)T , and the determinant
of this modified matrix is taken and divided by det (A). This formula is known as Cramer’s rule.

7.2.10 Upper Triangular Matrices

Definition 7.2.16 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such a matrix
equals zero below the main diagonal, the entries of the form Mii as shown.




∗ ∗ · · · ∗
0 ∗ . . .

...
...

. . .
. . . ∗

0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the main
diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 7.2.13.

Corollary 7.2.17 LetM be an upper (lower) triangular matrix. Then det (M) is obtained by taking
the product of the entries on the main diagonal.

7.3 The Cayley Hamilton Theorem∗

Definition 7.3.1 Let A be an n× n matrix. The characteristic polynomial is defined as

pA (t) ≡ det (tI −A)
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and the solutions to pA (t) = 0 are called eigenvalues. For A a matrix and p (t) = tn + an−1t
n−1 +

· · ·+ a1t+ a0, denote by p (A) the matrix defined by

p (A) ≡ An + an−1A
n−1 + · · ·+ a1A+ a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equation, that
equation defined by PA (t) = 0. It is one of the most important theorems in linear algebra1. The
following lemma will help with its proof.

Lemma 7.3.2 Suppose for all |λ| large enough,

A0 +A1λ+ · · ·+Amλ
m = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Multiply by λ−m to obtain

A0λ
−m +A1λ

−m+1 + · · ·+Am−1λ
−1 +Am = 0.

Now let |λ| → ∞ to obtain Am = 0. With this, multiply by λ to obtain

A0λ
−m+1 +A1λ

−m+2 + · · ·+Am−1 = 0.

Now let |λ| → ∞ to obtain Am−1 = 0. Continue multiplying by λ and letting λ→ ∞ to obtain that
all the Ai = 0. �

With the lemma, here is a simple corollary.

Corollary 7.3.3 Let Ai and Bi be n× n matrices and suppose

A0 +A1λ+ · · ·+Amλ
m = B0 +B1λ+ · · ·+Bmλ

m

for all |λ| large enough. Then Ai = Bi for all i. Consequently if λ is replaced by any n× n matrix,
the two sides will be equal. That is, for C any n× n matrix,

A0 +A1C + · · ·+AmC
m = B0 +B1C + · · ·+BmC

m.

Proof: Subtract and use the result of the lemma. �
With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 7.3.4 Let A be an n × n matrix and let p (λ) ≡ det (λI −A) be the characteristic poly-
nomial. Then p (A) = 0.

Proof: Let C (λ) equal the transpose of the cofactor matrix of (λI −A) for |λ| large. (If |λ| is
large enough, then λ cannot be in the finite list of eigenvalues of A and so for such λ, (λI −A)

−1

exists.) Therefore, by Theorem 7.2.14

C (λ) = p (λ) (λI −A)
−1
.

Note that each entry in C (λ) is a polynomial in λ having degree no more than n − 1. Therefore,
collecting the terms,

C (λ) = C0 + C1λ+ · · ·+ Cn−1λ
n−1

for Cj some n× n matrix. It follows that for all |λ| large enough,

(λI −A)
(
C0 + C1λ+ · · ·+ Cn−1λ

n−1
)
= p (λ) I

and so Corollary 7.3.3 may be used. It follows the matrix coefficients corresponding to equal powers
of λ are equal on both sides of this equation. Therefore, if λ is replaced with A, the two sides will
be equal. Thus

0 = (A−A)
(
C0 + C1A+ · · ·+ Cn−1A

n−1
)
= p (A) I = p (A) .

This proves the Cayley Hamilton theorem. �

1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some time later

and a proof was given by Frobenius in 1878.
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Rank Of A Matrix

8.1 Elementary Matrices

The elementary matrices result from doing a row operation to the identity matrix.

Definition 8.1.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

The elementary matrices are given in the following definition.

Definition 8.1.2 The elementary matrices consist of those matrices which result by applying a
row operation to an identity matrix. Those which involve switching rows of the identity are called
permutation matrices1.

As an example of why these elementary matrices are interesting, consider the following.




0 1 0
1 0 0
0 0 1






a b c d
x y z w
f g h i


 =




x y z w
a b c d
f g h i




A 3 × 4 matrix was multiplied on the left by an elementary matrix which was obtained from row
operation 1 applied to the identity matrix. This resulted in applying the operation 1 to the given
matrix. This is what happens in general.

1More generally, a permutation matrix is a matrix which comes by permuting the rows of the identity matrix, not

just switching two rows.

131
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Now consider what these elementary matrices look like. First consider the one which involves
switching row i and row j where i < j. This matrix is of the form




1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0

0
. . .

...
... 1

...
0 · · · 0 0 · · · · · · 0 1 · · · · · · 0
...

... 1 0 · · · 0
...

...
...

. . .
...

...
0 · · · · · · 0 · · · 0 1 0 · · · · · · 0
0 · · · 0 1 0 · · · · · · 0 · · · · · · 0
... 1

...
...

. . . 0
0 · · · · · · · · · · · · · · · · · · · · · · · · 0 1




The two exceptional rows are shown. The ith row was the jth and the jth row was the ith in the
identity matrix. Now consider what this does to a column vector.




1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0

0
. . .

...
... 1

...
0 · · · 0 0 · · · · · · 0 1 · · · · · · 0
...

... 1 0 · · · 0
...

...
...

. . .
...

...
0 · · · · · · 0 · · · 0 1 0 · · · · · · 0
0 · · · 0 1 0 · · · · · · 0 · · · · · · 0
... 1

...
...

. . . 0
0 · · · · · · · · · · · · · · · · · · · · · · · · 0 1







v1
...
...
vi
...
...
...
vj
...
...
vn




=




v1
...
...
vj
...
...
...
vi
...
...
vn




Now denote by P ij the elementary matrix which comes from the identity from switching rows i and
j. From what was just explained consider multiplication on the left by this elementary matrix.

P ij




a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

aj1 aj2 · · · · · · · · · · · · ajp
...

...
...

an1 an2 · · · · · · · · · · · · anp



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From the way you multiply matrices this is a matrix which has the indicated columns.




P ij




a11
...
ai1
...
aj1
...
an1




, P ij




a12
...
ai2
...
aj2
...
an2




, · · · , P ij




a1p
...
aip
...
ajp
...
anp







=







a11
...
aj1
...
ai1
...
an1




,




a12
...
aj2
...
ai2
...
an2




, · · · ,




a1p
...
ajp
...
aip
...
anp







=




a11 a12 · · · · · · · · · · · · a1p
...

...
...

aj1 aj2 · · · · · · · · · · · · ajp
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

an1 an2 · · · · · · · · · · · · anp




This has established the following lemma.

Lemma 8.1.3 Let P ij denote the elementary matrix which involves switching the ith and the jth

rows. Then
P ijA = B

where B is obtained from A by switching the ith and the jth rows.

Next consider the row operation which involves multiplying the ith row by a nonzero constant,
c. The elementary matrix which results from applying this operation to the ith row of the identity
matrix is of the form 



1 0 · · · · · · · · · · · · 0

0
. . .

...
... 1

...
... c

...
... 1

...
...

. . . 0
0 · · · · · · · · · · · · 0 1



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Now consider what this does to a column vector.




1 0 · · · · · · · · · · · · 0

0
. . .

...
... 1

...
... c

...
... 1

...
...

. . . 0
0 · · · · · · · · · · · · 0 1







v1
...

vi−1

vi
vi+1

...
vn




=




v1
...

vi−1

cvi
vi+1

...
vn




Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by the nonzero
constant, c. Then from what was just discussed and the way matrices are multiplied,

E (c, i)




a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

aj2 aj2 · · · · · · · · · · · · ajp
...

...
...

an1 an2 · · · · · · · · · · · · anp




equals a matrix having the columns indicated below.

=




E (c, i)




a11
...
ai1
...
aj1
...
an1




, E (c, i)




a12
...
ai2
...
aj2
...
an2




, · · · , E (c, i)




a1p
...
aip
...
ajp
...
anp







=




a11 a12 · · · · · · · · · · · · a1p
...

...
...

cai1 cai2 · · · · · · · · · · · · caip
...

...
...

aj2 aj2 · · · · · · · · · · · · ajp
...

...
...

an1 an2 · · · · · · · · · · · · anp




This proves the following lemma.

Lemma 8.1.4 Let E (c, i) denote the elementary matrix corresponding to the row operation in which
the ith row is multiplied by the nonzero constant, c. Thus E (c, i) involves multiplying the ith row of
the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.
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Finally consider the third of these row operations. Denote by E (c× i+ j) the elementary matrix
which replaces the jth row with itself added to c times the ith row added to it. In case i < j this
will be of the form 



1 0 · · · · · · · · · 0 0

0
. . .

...
... 1

...
...

...
. . .

...
... c · · · 1

...
...

. . . 0
0 · · · · · · · · · · · · 0 1




Now consider what this does to a column vector.




1 0 · · · · · · · · · 0 0

0
. . .

...
... 1

...
...

...
. . .

...
... c · · · 1

...
...

. . . 0
0 · · · · · · · · · · · · 0 1







v1
...
vi
...
vj
...
vn




=




v1
...
vi
...

cvi + vj
...
vn




Now from this and the way matrices are multiplied,

E (c× i+ j)




a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

aj2 aj2 · · · · · · · · · · · · ajp
...

...
...

an1 an2 · · · · · · · · · · · · anp




equals a matrix of the following form having the indicated columns.




E (c× i+ j)




a11
...
ai1
...
aj2
...
an1




, E (c× i+ j)




a12
...
ai2
...
aj2
...
an2




, · · ·E (c× i+ j)




a1p
...
aip
...
ajp
...
anp






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=




a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

aj2 + cai1 aj2 + cai2 · · · · · · · · · · · · ajp + caip
...

...
...

an1 an2 · · · · · · · · · · · · anp




The case where i > j is handled similarly. This proves the following lemma.

Lemma 8.1.5 Let E (c× i+ j) denote the elementary matrix obtained from I by replacing the jth

row with c times the ith row added to it. Then

E (c× i+ j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the ith row of
A.

The next theorem is the main result.

Theorem 8.1.6 To perform any of the three row operations on a matrix A it suffices to do the row
operation on the identity matrix obtaining an elementary matrix E and then take the product, EA.
Furthermore, each elementary matrix is invertible and its inverse is an elementary matrix.

Proof: The first part of this theorem has been proved in Lemmas 8.1.3 - 8.1.5. It only remains
to verify the claim about the inverses. Consider first the elementary matrices corresponding to row
operation of type three.

E (−c× i+ j)E (c× i+ j) = I

This follows because the first matrix takes c times row i in the identity and adds it to row j. When
multiplied on the left by E (−c× i+ j) it follows from the first part of this theorem that you take
the ith row of E (c× i+ j) which coincides with the ith row of I since that row was not changed,
multiply it by −c and add to the jth row of E (c× i+ j) which was the jth row of I added to c
times the ith row of I. Thus E (−c× i+ j) multiplied on the left, undoes the row operation which
resulted in E (c× i+ j). The same argument applied to the product

E (c× i+ j)E (−c× i+ j)

replacing c with−c in the argument yields that this product is also equal to I. Therefore, E (c× i+ j)
−1

=
E (−c× i+ j) .

Similar reasoning shows that for E (c, i) the elementary matrix which comes from multiplying
the ith row by the nonzero constant, c,

E (c, i)
−1

= E
(
c−1, i

)
.

Finally, consider P ij which involves switching the ith and the jth rows.

P ijP ij = I

because by the first part of this theorem, multiplying on the left by P ij switches the ith and jth rows
of P ij which was obtained from switching the ith and jth rows of the identity. First you switch them
to get P ij and then you multiply on the left by P ij which switches these rows again and restores

the identity matrix. Thus
(
P ij
)−1

= P ij . �
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8.2 THE Row Reduced Echelon Form Of A Matrix

Recall that putting a matrix in row reduced echelon form involves doing row operations as described
on Page 66. In this section we review the description of the row reduced echelon form and prove the
row reduced echelon form for a given matrix is unique. That is, every matrix can be row reduced to
a unique row reduced echelon form. Of course this is not true of the echelon form. The significance
of this is that it becomes possible to use the definite article in referring to the row reduced echelon
form and hence important conclusions about the original matrix may be logically deduced from an
examination of its unique row reduced echelon form. First we need the following definition of some
terminology.

Definition 8.2.1 Let v1, · · · ,vk,u be vectors. Then u is said to be a linear combination of the
vectors {v1, · · · ,vk} if there exist scalars, c1, · · · , ck such that

u =
k∑

i=1

civi.

The collection of all linear combinations of the vectors, {v1, · · · ,vk} is known as the span of these
vectors and is written as span (v1, · · · ,vk).

Another way to say the same thing as expressed in the earlier definition of row reduced echelon
form found on Page 65 is the following which is a more useful description when proving the major
assertions about the row reduced echelon form.

Definition 8.2.2 Let ei denote the column vector which has all zero entries except for the ith slot
which is one. An m×n matrix is said to be in row reduced echelon form if, in viewing successive
columns from left to right, the first nonzero column encountered is e1 and if you have encountered
e1, e2, · · · , ek, the next column is either ek+1 or is a linear combination of the vectors, e1, e2, · · · , ek.
Theorem 8.2.3 Let A be an m×n matrix. Then A has a row reduced echelon form determined by
a simple process.

Proof: Viewing the columns of A from left to right take the first nonzero column. Pick a nonzero
entry in this column and switch the row containing this entry with the top row of A. Now divide
this new top row by the value of this nonzero entry to get a 1 in this position and then use row
operations to make all entries below this equal to zero. Thus the first nonzero column is now e1.
Denote the resulting matrix by A1. Consider the sub-matrix of A1 to the right of this column and
below the first row. Do exactly the same thing for this sub-matrix that was done for A. This time
the e1 will refer to Fm−1. Use the first 1 obtained by the above process which is in the top row of
this sub-matrix and row operations to zero out every entry above it in the rows of A1. Call the
resulting matrix A2. Thus A2 satisfies the conditions of the above definition up to the column just
encountered. Continue this way till every column has been dealt with and the result must be in row
reduced echelon form. �

The following diagram illustrates the above procedure. Say the matrix looked something like the
following. 



0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 ∗ ∗ ∗ ∗ ∗ ∗




First step would yield something like



0 1 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 ∗ ∗ ∗ ∗ ∗



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For the second step you look at the lower right corner as described,



∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗




and if the first column consists of all zeros but the next one is not all zeros, you would get something
like this. 


0 1 ∗ ∗ ∗
...

...
...

...
...

0 0 ∗ ∗ ∗




Thus, after zeroing out the term in the top row above the 1, you get the following for the next step
in the computation of the row reduced echelon form for the original matrix.




0 1 ∗ 0 ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 0 0 ∗ ∗ ∗


 .

Next you look at the lower right matrix below the top two rows and to the right of the first four
columns and repeat the process.

Recall the following definition which was discussed earlier.

Definition 8.2.4 The first pivot column of A is the first nonzero column of A. The next pivot
column is the first column after this which becomes e2 in the row reduced echelon form. The third is
the next column which becomes e3 in the row reduced echelon form and so forth.

There are three choices for row operations at each step in the above theorem. A natural question
is whether the same row reduced echelon matrix always results in the end from following the above
algorithm applied in any way. The next corollary says this is the case but first, here is a fundamental
lemma.

In rough terms, the following lemma states that linear relationships between columns in a
matrix are preserved by row operations. This simple lemma is the main result in understanding all
the major questions related to the row reduced echelon form as well as many other topics.

Lemma 8.2.5 Let A and B be two m × n matrices and suppose B results from a row operation
applied to A. Then the kth column of B is a linear combination of the i1, · · · , ir columns of B if and
only if the kth column of A is a linear combination of the i1, · · · , ir columns of A. Furthermore, the
scalars in the linear combination are the same. (The linear relationship between the kth column of
A and the i1, · · · , ir columns of A is the same as the linear relationship between the kth column of
B and the i1, · · · , ir columns of B.)

Proof: Let A equal the following matrix in which the ak are the columns

(
a1 a2 · · · an

)

and let B equal the following matrix in which the columns are given by the bk

(
b1 b2 · · · bn

)

Then by Theorem 8.1.6 on Page 136 bk = Eak where E is an elementary matrix. Suppose then
that one of the columns of A is a linear combination of some other columns of A. Say

ak =
∑

r∈S

crar.
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Then multiplying by E,

bk = Eak =
∑

r∈S

crEar =
∑

r∈S

crbr. �

Definition 8.2.6 Two matrices are said to be row equivalent if one can be obtained from the
other by a sequence of row operations.

It has been shown above that every matrix is row equivalent to one which is in row reduced
echelon form. Note 


x1
...
xn


 = x1e1 + · · ·+ xnen

so to say two column vectors are equal is to say they are the same linear combination of the special
vectors ej .

Corollary 8.2.7 The row reduced echelon form is unique. That is if B,C are two matrices in row
reduced echelon form and both are row equivalent to A, then B = C.

Proof: Suppose B and C are both row reduced echelon forms for the matrix A. Then they
clearly have the same zero columns since row operations leave zero columns unchanged. If B has
the sequence e1, e2, · · · , er occurring for the first time in the positions, i1, i2, · · · , ir, the description
of the row reduced echelon form means that each of these columns is not a linear combination of
the preceding columns. Therefore, by Lemma 8.2.5, the same is true of the columns in positions
i1, i2, · · · , ir for C. It follows from the description of the row reduced echelon form that e1, · · · , er
occur respectively for the first time in columns i1, i2, · · · , ir for C. Therefore, both B and C have the
sequence e1, e2, · · · , er occurring for the first time in the positions, i1, i2, · · · , ir. By Lemma 8.2.5,
the columns between the ik and ik+1 position in the two matrices are linear combinations involving
the same scalars of the columns in the i1, · · · , ik position. Also the columns after the ir position
are linear combinations of the columns in the i1, · · · , ir positions involving the same scalars in both
matrices. This is equivalent to the assertion that each of these columns is identical and this proves
the corollary. �

The above corollary shows that you can determine whether two matrices are row equivalent by
simply checking their row reduced echelon forms. The matrices are row equivalent if and only if
they have the same row reduced echelon form.

Now with the above corollary, here is a very fundamental observation. It concerns a matrix which
looks like this: (More columns than rows.)

Corollary 8.2.8 Suppose A is an m×n matrix and that m < n. That is, the number of rows is less
than the number of columns. Then one of the columns of A is a linear combination of the preceding
columns of A. Also, there exists a nonzero solution x to the equation Ax = 0.

Proof: Since m < n, not all the columns of A can be pivot columns. In reading from left to
right, pick the first one which is not a pivot column. Then from the description of the row reduced
echelon form, this column is a linear combination of the preceding columns. Denote the jth column
of A by aj . Thus for some k > 1,

ak =
k−1∑

j=1

xjaj , so
k−1∑

j=1

xjaj + (−1) ak = 0

Let x = (x1, · · · , xk−1,−1, 0, · · · , 0)T . Then Ax = 0. �
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Example 8.2.9 Find the row reduced echelon form of the matrix




0 0 2 3
0 2 0 1
0 1 1 5




The first nonzero column is the second in the matrix. We switch the third and first rows to
obtain 


0 1 1 5
0 2 0 1
0 0 2 3




Now we multiply the top row by −2 and add to the second.




0 1 1 5
0 0 −2 −9
0 0 2 3




Next, add the second row to the bottom and then divide the bottom row by −6




0 1 1 5
0 0 −2 −9
0 0 0 1




Next use the bottom row to obtain zeros in the last column above the 1 and divide the second row
by −2 


0 1 1 0
0 0 1 0
0 0 0 1




Finally, add −1 times the middle row to the top.




0 1 0 0
0 0 1 0
0 0 0 1


 .

This is in row reduced echelon form.

Example 8.2.10 Find the row reduced echelon form for the matrix




1 2 0 2
−1 3 4 3
0 5 4 5




◮◮

You should verify that the row reduced echelon form is




1 0 − 8
5 0

0 1 4
5 1

0 0 0 0


 .

Having developed the row reduced echelon form, it is now easy to verify that the right inverse
found earlier using the Gauss Jordan procedure is the inverse.

Theorem 8.2.11 Suppose A,B are n×n matrices and AB = I. Then it follows that BA = I also,
and so B = A−1. For n × n matrices, the left inverse, right inverse and inverse are all the same
thing.
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Proof. If AB = I for A,B n×n matrices, is BA = I? If AB = I, there exists a unique solution
x to the equation

Bx = y

for any choice of y. In fact,
x = A (Bx) = Ay.

This means the row reduced echelon form of B must be I. Thus every column is a pivot column.
Otherwise, there exists a free variable and the solution, if it exists, would not be unique, contrary
to what was just shown must happen if AB = I. It follows that a right inverse B−1 for B exists.
The Gauss Jordan procedure for finding the inverse yields

(
B I

)
7→
(
I B−1

)
.

Now multiply both sides of the equation AB = I on the right by B−1. Then

A = A
(
BB−1

)
= (AB)B−1 = B−1.

Thus A is the right inverse of B, and so BA = I. This shows that if AB = I, then BA = I also.
Exchanging roles of A and B, we see that if BA = I, then AB = I. �

8.3 The Rank Of A Matrix

8.3.1 The Definition Of Rank

To begin, here is a definition to introduce some terminology.

Definition 8.3.1 Let A be an m× n matrix. The column space of A is the span of the columns.
The row space is the span of the rows.

There are three definitions of the rank of a matrix which are useful. These are given in the
following definition. It turns out that the concept of determinant rank is often important but is
virtually impossible to find directly. The other two concepts of rank are very easily determined and
it is a happy fact that all three yield the same number. This is shown later.

Definition 8.3.2 A sub-matrix of a matrix A is a rectangular array of numbers obtained by
deleting some rows and columns of A. Let A be an m × n matrix. The determinant rank of the
matrix equals r where r is the largest number such that some r × r sub-matrix of A has a non zero
determinant. The row space of a matrix is the span of the rows and the column space of a matrix
is the span of the columns. The row rank of a matrix is the number of nonzero rows in the row
reduced echelon form and the column rank is the number columns in the row reduced echelon form
which are one of the ek vectors. Thus the column rank equals the number of pivot columns. It follows
the row rank equals the column rank. This is also called the rank of the matrix. The rank of a matrix
A is denoted by rank (A) .

Example 8.3.3 Consider the matrix (
1 2 3
2 4 6

)

What is its rank?

You could look at all the 2× 2 submatrices
(

1 2
2 4

)
,

(
1 3
2 6

)
,

(
2 3
4 6

)
.
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Each has determinant equal to 0. Therefore, the rank is less than 2. Now look at the 1× 1 subma-
trices. There exists one of these which has nonzero determinant. For example (1) has determinant
equal to 1 and so the rank of this matrix equals 1.

Of course this example was pretty easy but what if you had a 4× 7 matrix? You would have to
consider all the 4× 4 submatrices and then all the 3× 3 submatrices and then all the 2× 2 matrices
and finally all the 1 × 1 matrices in order to compute the rank. Clearly this is not practical. The
following theorem will remove the difficulties just indicated.

The following theorem is proved later.

Theorem 8.3.4 Let A be an m×n matrix. Then the row rank, column rank and determinant rank
are all the same.

Example 8.3.5 Find the rank of the matrix




1 2 1 3 0
−4 3 2 1 2
3 2 1 6 5
4 −3 −2 1 7


 .

From the above definition, all you have to do is find the row reduced echelon form and then
count up the number of nonzero rows. But the row reduced echelon form of this matrix is




1 0 0 0 − 17
4

0 1 0 0 1
0 0 1 0 − 45

4
0 0 0 1 9

2




and so the rank of this matrix is 4.
Find the rank of the matrix 



1 2 1 3 0
−4 3 2 1 2
3 2 1 6 5
0 7 4 10 7




The row reduced echelon form is



1 0 0 3
2

5
2

0 1 0 −4 −17
0 0 1 19

2
63
2

0 0 0 0 0




and so this time the rank is 3.

8.3.2 Finding The Row And Column Space Of A Matrix

The row reduced echelon form also can be used to obtain an efficient description of the row and
column space of a matrix. Of course you can get the column space by simply saying that it equals
the span of all the columns but often you can get the column space as the span of fewer columns than
this. This is what we mean by an “efficient description”. This is illustrated in the next example.

Example 8.3.6 Find the rank of the following matrix and describe the column and row spaces
efficiently. 


1 2 1 3 2
1 3 6 0 2
3 7 8 6 6


 (8.1)
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The row reduced echelon form is



1 0 −9 9 2
0 1 5 −3 0
0 0 0 0 0


 .

Therefore, the rank of this matrix equals 2. All columns of this row reduced echelon form are in

span






1
0
0


 ,




0
1
0




 .

For example, 


−9
5
0


 = −9




1
0
0


+ 5




0
1
0


 .

By Lemma 8.2.5, all columns of the original matrix, are similarly contained in the span of the first
two columns of that matrix. For example, consider the third column of the original matrix.




1
6
8


 = −9




1
1
3


+ 5




2
3
7


 .

How did I know to use −9 and 5 for the coefficients? This is what Lemma 8.2.5 says! It says linear
relationships are all preserved. Therefore, the column space of the original matrix equals the span
of the first two columns. This is the desired efficient description of the column space.

What about an efficient description of the row space? When row operations are used, the resulting
vectors remain in the row space. Thus the rows in the row reduced echelon form are in the row space
of the original matrix. Furthermore, by reversing the row operations, each row of the original matrix
can be obtained as a linear combination of the rows in the row reduced echelon form. It follows that
the span of the nonzero rows in the row reduced echelon matrix equals the span of the original rows.
In the above example, the row space equals the span of the two vectors,

(
1 0 −9 9 2

)
and(

0 1 5 −3 0
)
.

Example 8.3.7 Find the rank of the following matrix and describe the column and row spaces
efficiently. 



1 2 1 3 2
1 3 6 0 2
1 2 1 3 2
1 3 2 4 0


 (8.2)

The row reduced echelon form is



1 0 0 0 13
2

0 1 0 2 − 5
2

0 0 1 −1 1
2

0 0 0 0 0


 .

and so the rank is 3, the row space is the span of the vectors,
(
0 0 1 −1 1

2

)
,
(
0 1 0 2 − 5

2

)
,

(
1 0 0 0 13

2

)
,

and the column space is the span of the first three columns in the original matrix,

span







1
1
1
1


 ,




2
3
2
3


 ,




1
6
1
2





 .
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Example 8.3.8 Find the rank of the following matrix and describe the column and row spaces
efficiently. 


1 2 3 0 1
2 1 3 2 4
−1 2 1 3 1


 .

The row reduced echelon form is



1 0 1 0 21
17

0 1 1 0 − 2
17

0 0 0 1 14
17


 .

It follows the rank is three and the column space is the span of the first, second and fourth columns
of the original matrix.

span






1
2
−1


 ,




2
1
2


 ,




0
2
3






while the row space is the span of the vectors

(
0 0 0 1 14

17

)
,
(
0 1 1 0 − 2

17

)
,
(
1 0 1 0 21

17

)
.

Procedure 8.3.9 To find the rank of a matrix, obtain the row reduced echelon form for the matrix.
Then count the number of nonzero rows or equivalently the number of pivot columns. This is the
rank. The row space is the span of the nonzero rows in the row reduced echelon form and the column
space is the span of the pivot columns of the original matrix.

8.4 Linear Independence And Bases

8.4.1 Linear Independence And Dependence

First we consider the concept of linear independence. We define what it means for vectors in Fn

to be linearly independent and then give equivalent descriptions. In the following definition, the
symbol, (

v1 v2 · · · vk

)

denotes the matrix which has the vector v1 as the first column, v2 as the second column and so
forth until vk is the kth column.

Definition 8.4.1 Let {v1, · · · ,vk} be vectors in Fn. Then this collection of vectors is said to be
linearly independent if each of the columns of the n× k matrix

(
v1 v2 · · · vk

)

is a pivot column. Thus the row reduced echelon form for this matrix is

(
e1 e2 · · · ek

)
.

The question whether any vector in the first k columns in a matrix is a pivot column is indepen-
dent of the presence of later columns. Thus each of {v1, · · · ,vk} is a pivot column in

(
v1 v2 · · · vk

)

if and only if these vectors are each pivot columns in

(
v1 v2 · · · vk w1 · · · wr

)

Here is what the linear independence means in terms of linear relationships.
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Corollary 8.4.2 The collection of vectors, {v1, · · · ,vk} is linearly independent if and only if none
of these vectors is a linear combination of the others.

Proof: If {v1, · · · ,vk} is linearly independent, then every column in

(
v1 v2 · · · vk

)

is a pivot column which requires that the row reduced echelon form is

(
e1 e2 · · · ek

)
.

Now none of the ei vectors is a linear combination of the others. By Lemma 8.2.5 on Page 138 none
of the vi is a linear combination of the others. Recall this lemma says linear relationships between
the columns are preserved under row operations.

Next suppose none of the vectors {v1, · · · ,vk} is a linear combination of the others. Then none
of the columns in (

v1 v2 · · · vk

)

is a linear combination of the others. By Lemma 8.2.5 the same is true of the row reduced ech-
elon form for this matrix. From the description of the row reduced echelon form, it follows that
the ith column of the row reduced echelon form must be ei since otherwise, it would be a linear
combination of the first i − 1 vectors e1,· · · , ei−1 and by Lemma 8.2.5, it follows vi would be the
same linear combination of v1, · · · ,vi−1 contrary to the assumption that none of the columns in(
v1 v2 · · · vk

)
is a linear combination of the others. Therefore, each of the k columns in(

v1 v2 · · · vk

)
is a pivot column and so {v1, · · · ,vk} is linearly independent. �

Corollary 8.4.3 The collection of vectors, {v1, · · · ,vk} is linearly independent if and only if when-
ever

n∑

i=1

civi = 0

it follows each ci = 0.

Proof: Suppose first {v1, · · · ,vk} is linearly independent. Then by Corollary 8.4.2, none of the
vectors is a linear combination of the others. Now suppose

n∑

i=1

civi = 0

and not all the ci = 0. Then pick ci which is not zero, divide by it and solve for vi in terms of the
other vj , contradicting the fact that none of the vi equals a linear combination of the others.

Now suppose the condition about the sum holds. If vi is a linear combination of the other vectors
in the list, then you could obtain an equation of the form

vi =
∑

j ̸=i

cjvj

and so
0 =

∑

j ̸=i

cjvj + (−1)vi,

contradicting the condition about the sum. �
Sometimes we refer to this last condition about sums as follows: The set of vectors, {v1, · · · ,vk}

is linearly independent if and only if there is no nontrivial linear combination which equals zero. (A
nontrivial linear combination is one in which not all the scalars equal zero.)

We give the following equivalent definition of linear independence which follows from the above
corollaries.
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Definition 8.4.4 A set of vectors, {v1, · · · ,vk} is linearly independent if and only if none of the
vectors is a linear combination of the others or equivalently if there is no nontrivial linear combination
of the vectors which equals 0. It is said to be linearly dependent if at least one of the vectors is

a linear combination of the others or equivalently there exists a nontrivial linear combination which
equals zero.

Note the meaning of the words. To say a set of vectors is linearly dependent means at least one
is a linear combination of the others. In other words, it is in a sense “dependent” on these other
vectors.

The following corollary follows right away from the row reduced echelon form. It concerns a
matrix which looks like this: (More columns than rows.)

Corollary 8.4.5 Let {v1, · · · ,vk} be a set of vectors in Fn. Then if k > n, it must be the case that
{v1, · · · ,vk} is not linearly independent. In other words, if k > n, then {v1, · · · ,vk} is dependent.

Proof: If k > n, then the columns of
(
v1 v2 · · · vk

)
cannot each be a pivot column

because there are at most n pivot columns due to the fact the matrix has only n rows. In reading
from left to right, pick the first column which is not a pivot column. Then from the description of
row reduced echelon form, this column is a linear combination of the preceding columns and so the
given vectors are dependent by Corollary 8.4.2. �

Example 8.4.6 Determine whether the vectors








1
2
3
0







2
1
0
1







0
1
1
2







3
2
2
−1








are linearly

independent. If they are linearly dependent, exhibit one of the vectors as a linear combination of the
others.

Form the matrix mentioned above.



1 2 0 3
2 1 1 2
3 0 1 2
0 1 2 −1




Then the row reduced echelon form of this matrix is



1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0


 .

Thus not all the columns are pivot columns and so the vectors are not linear independent. Note the
fourth column is of the form

1




1
0
0
0


+ 1




0
1
0
0


+ (−1)




0
0
1
0



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From Lemma 8.2.5, the same linear relationship exists between the columns of the original matrix.
Thus

1




1
2
3
0


+ 1




2
1
0
1


+ (−1)




0
1
1
2


 =




3
2
2
−1


 .

Note the usefulness of the row reduced echelon form in discovering hidden linear relationships in
collections of vectors.

Example 8.4.7 Determine whether the vectors








1
2
3
0







2
1
0
1







0
1
1
2







3
2
2
0








are linearly in-

dependent. If they are linearly dependent, exhibit one of the vectors as a linear combination of the
others.

The matrix used to find this is 


1 2 0 3
2 1 1 2
3 0 1 2
0 1 2 0




The row reduced echelon form is 


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




and so every column is a pivot column. Therefore, these vectors are linearly independent and there
is no way to obtain one of the vectors as a linear combination of the others.

8.4.2 Subspaces

A subspace is a set of vectors with the property that linear combinations of these vectors remain in
the set. Geometrically, subspaces are like lines and planes which contain the origin. More precisely,
the following definition is the right way to think of this.

Definition 8.4.8 Let V be a nonempty collection of vectors in Fn. Then V is called a subspace if
whenever α, β are scalars and u,v are vectors in V, the linear combination αu+ βv is also in V .

It turns out that every subspace equals the span of some vectors. This is the content of the next
theorem.

Theorem 8.4.9 V is a subspace of Fn if and only if there exist vectors of V

{u1, · · · ,uk}

such that V = span (u1, · · · ,uk) .

Proof: Pick a vector of V,u1. If V = span {u1} , then stop. You have found your list of vectors.
If V ̸= span (u1) , then there exists u2 a vector of V which is not a vector in span (u1) . Consider
span (u1,u2) . If V = span (u1,u2) , stop. Otherwise, pick u3 /∈ span (u1,u2) . Continue this way.
Note that since V is a subspace, these spans are each contained in V . The process must stop with
uk for some k ≤ n since otherwise, the matrix

(
u1 · · · uk

)
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having these vectors as columns would have n rows and k > n columns. Consequently, it can have
no more than n pivot columns and so the first column which is not a pivot column would be a linear
combination of the preceding columns contrary to the construction.

For the other half, suppose V = span (u1, · · · ,uk) and let
∑k

i=1 ciui and
∑k

i=1 diui be two
vectors in V. Now let α and β be two scalars. Then

α
k∑

i=1

ciui + β
k∑

i=1

diui =
k∑

i=1

(αci + βdi)ui

which is one of the things in span (u1, · · · ,uk) showing that span (u1, · · · ,uk) has the properties of
a subspace. �

The following corollary also follows easily.

Corollary 8.4.10 If V is a subspace of Fn, then there exist vectors of V, {u1, · · · ,uk} such that
V = span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.

Proof: Let V = span (u1, · · · ,uk) . Then let the vectors {u1, · · · ,uk} be the columns of the
following matrix. (

u1 · · · uk

)

Retain only the pivot columns. That is, determine the pivot columns from the row reduced echelon
form and these are a basis for span (u1, · · · ,uk). �

The message is that subspaces of Fn consist of spans of finite, linearly independent collections of
vectors of Fn.

The following fundamental lemma is very useful.

Lemma 8.4.11 Suppose {x1, · · · ,xr} is linearly independent and each xk is contained in span (y1, · · · ,ys) .
Then s ≥ r. In words, spanning sets have at least as many vectors as linearly independent sets.

Proof: Since {y1, · · · ,ys} is a spanning set, there exist scalars aij such that

xj =
s∑

i=1

aijyi

Suppose s < r. Then the matrix A whose ijth entry is aij has fewer rows, s than columns, r. By
Corollary 8.2.8 there exists d such that d ̸= 0 but Ad = 0. In other words,

r∑

j=1

aijdj = 0, i = 1, 2, · · · , s

Therefore,

r∑

j=1

djxj =
r∑

j=1

dj

s∑

i=1

aijyi

=

s∑

i=1




r∑

j=1

aijdj


yi =

s∑

i=1

0yi = 0

which contradicts {x1, · · · ,xr} is linearly independent, because not all the dj = 0. Thus s ≥ r. �

Note how this lemma was totally dependent on algebraic considerations and was independent of
context. This will be considered more later in the chapter on abstract vector spaces. I didn’t need
to know what the xk, yk were, only that the {x1, · · · ,xr} were independent and contained in the
span of the yk.
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8.4.3 Basis Of A Subspace

It was just shown in Corollary 8.4.10 that every subspace of Fn is equal to the span of a linearly
independent collection of vectors of Fn. Such a collection of vectors is called a basis.

Definition 8.4.12 Let V be a subspace of Fn. Then {u1, · · · ,uk} is a basis for V if the following
two conditions hold.

1. span (u1, · · · ,uk) = V.

2. {u1, · · · ,uk} is linearly independent.

The plural of basis is bases.

The main theorem about bases is the following.

Theorem 8.4.13 Let V be a subspace of Fn and suppose {u1, · · · ,uk}, {v1, · · · ,vm} are two bases
for V . Then k = m.

Proof: This follows right away from Lemma 8.4.11. {u1, · · · ,uk} is a spanning set while
{v1, · · · ,vm} is linearly independent so k ≥ m.Also {v1, · · · ,vm} is a spanning set while {u1, · · · ,uk}
is linearly independent so m ≥ k.

Now here is another proof. Suppose k < m. Then since {u1, · · · ,uk} is a basis for V, each vi is
a linear combination of the vectors of {u1, · · · ,uk} . Consider the matrix

(
u1 · · · uk v1 · · · vm

)

in which each of the ui is a pivot column because the {u1, · · · ,uk} are linearly independent. There-
fore, the row reduced echelon form of this matrix is

(
e1 · · · ek w1 · · · wm

)
(8.3)

where each wj has zeroes below the kth row. This is because of Lemma 8.2.5 which implies each wi

is a linear combination of the e1, · · · , ek. Discarding the bottom n− k rows of zeroes in the above,
yields the matrix (

e′1 · · · e′k w′
1 · · · w′

m

)

in which all vectors are in Fk. Since m > k, it follows from Corollary 8.4.5 that the vectors,
{w′

1, · · · ,w′
m} are dependent. Therefore, some w′

j is a linear combination of the other w′
i. There-

fore, wj is a linear combination of the other wi in (8.3). By Lemma 8.2.5 again, the same linear
relationship exists between the {v1, · · · ,vm} showing that {v1, · · · ,vm} is not linearly independent
and contradicting the assumption that {v1, · · · ,vm} is a basis. It follows m ≤ k. Similarly, k ≤ m.
�

This is a very important theorem so here is yet another proof of it.

Theorem 8.4.14 Let V be a subspace and suppose {u1, · · · ,uk} and {v1, · · · ,vm} are two bases
for V . Then k = m.

Proof: Suppose k > m. Then since the vectors, {u1, · · · ,uk} span V, there exist scalars, cij
such that

m∑

i=1

cijvi = uj .

Therefore,
k∑

j=1

djuj = 0 if and only if
k∑

j=1

m∑

i=1

cijdjvi = 0
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if and only if
m∑

i=1




k∑

j=1

cijdj


vi = 0

Now since{v1, · · · ,vn} is independent, this happens if and only if

k∑

j=1

cijdj = 0, i = 1, 2, · · · ,m.

However, this is a system of m equations in k variables, d1, · · · , dk and m < k. Therefore, there
exists a solution to this system of equations in which not all the dj are equal to zero. Recall why
this is so. The augmented matrix for the system is of the form

(
C 0

)
where C is a matrix which

has more columns than rows. Therefore, there are free variables and hence nonzero solutions to the
system of equations. However, this contradicts the linear independence of {u1, · · · ,uk} because, as

explained above,
∑k

j=1 djuj = 0. Similarly it cannot happen that m > k. �

The following definition can now be stated.

Definition 8.4.15 Let V be a subspace of Fn. Then the dimension of V is defined to be the
number of vectors in a basis.

Corollary 8.4.16 The dimension of Fn is n.

Proof: You only need to exhibit a basis for Fn which has n vectors. Such a basis is {e1, · · · , en}.
�

Corollary 8.4.17 Suppose {v1, · · · ,vn} is linearly independent and each vi is a vector in Fn. Then
{v1, · · · ,vn} is a basis for Fn. Suppose {v1, · · · ,vm} spans Fn. Then m ≥ n. If {v1, · · · ,vn} spans
Fn, then {v1, · · · ,vn} is linearly independent.

Proof: Let u be a vector of Fn and consider the matrix

(
v1 · · · vn u

)
.

Since each vi is a pivot column, the row reduced echelon form is

(
e1 · · · en w

)

and so, since w is in span (e1, · · · , en) , it follows from Lemma 8.2.5 that u is one of the vectors in
span (v1, · · · ,vn) . Therefore, {v1, · · · ,vn} is a basis as claimed.

To establish the second claim, suppose thatm < n. Then letting vi1 , · · · ,vik be the pivot columns
of the matrix (

v1 · · · vm

)

it follows k ≤ m < n and these k pivot columns would be a basis for Fn having fewer than n vectors,
contrary to Theorem 8.4.13 which states every two bases have the same number of vectors in them.

Finally consider the third claim. If {v1, · · · ,vn} is not linearly independent, then replace this
list with {vi1 , · · · ,vik} where these are the pivot columns of the matrix

(
v1 · · · vn

)

Then {vi1 , · · · ,vik} spans Fn and is linearly independent so it is a basis having less than n vectors
contrary to Theorem 8.4.13 which states every two bases have the same number of vectors in them.
�
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Example 8.4.18 Find the rank of the following matrix. If the rank is r, identify r columns in

the original matrix which have the property that every other column may be written as a linear
combination of these. Also find a basis for the row and column spaces of the matrices.




1 2 3 2
1 5 −4 −1
−2 3 1 0




The row reduced echelon form is



1 0 0 27
70

0 1 0 1
10

0 0 1 33
70




and so the rank of the matrix is 3. A basis for the column space is the first three columns of the
original matrix. I know they span because the first three columns of the row reduced echelon
form above span the column space of that matrix. They are linearly independent because the first
three columns of the row reduced echelon form are linearly independent. By Lemma 8.2.5 all linear
relationships are preserved and so these first three vectors form a basis for the column space. The
four rows of the row reduced echelon form form a basis for the row space of the original matrix.

Example 8.4.19 Find the rank of the following matrix. If the rank is r, identify r columns in

the original matrix which have the property that every other column may be written as a linear
combination of these. Also find a basis for the row and column spaces of the matrices.




1 2 3 0 1
1 1 2 −6 2
−2 3 1 0 2




The row reduced echelon form is



1 0 1 0 − 1
7

0 1 1 0 4
7

0 0 0 1 − 11
42


 .

A basis for the column space of this row reduced echelon form is the first second and fourth columns.
Therefore, a basis for the column space in the original matrix is the first second and fourth columns.
The rank of the matrix is 3. A basis for the row space of the original matrix is the columns of the
row reduced echelon form.

8.4.4 Extending An Independent Set To Form A Basis

Suppose {v1, · · · ,vm} is a linearly independent set of vectors in Fn. It turns out there is a larger
set of vectors, {v1, · · · ,vm,vm+1, · · · ,vn} which is a basis for Fn. It is easy to do this using the
row reduced echelon form. Consider the following matrix having rank n in which the columns are
shown. (

v1 · · · vm e1 e2 · · · en
)
.

Since the {v1, · · · ,vm} are linearly independent, the row reduced echelon form of this matrix is of
the form (

e1 · · · em u1 u2 · · · un

)

Now the pivot columns can be identified and this leads to a basis for the column space of the original
matrix which is of the form {

v1, · · · ,vm, ei1 , · · · , ein−m

}
.

This proves the following theorem.
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Theorem 8.4.20 Let {v1, · · · ,vm} be a linearly independent set of vectors in Fn. Then there is a
larger set of vectors, {v1, · · · ,vm,vm+1, · · · ,vn} which is a basis for Fn.

Example 8.4.21 The vectors,








1
1
0
0


 ,




1
0
1
0








are linearly independent. Enlarge this set of

vectors to form a basis for R4.

Using the above technique, consider the following matrix.




1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 1




whose row reduced echelon form is



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 −1 −1 0
0 0 0 0 0 1




The pivot columns are numbers 1,2,3, and 6. Therefore, a basis is








1
1
0
0


 ,




1
0
1
0


 ,




1
0
0
0


 ,




0
0
0
1








8.4.5 Finding The Null Space Or Kernel Of A Matrix

Let A be an m× n matrix.

Definition 8.4.22 ker (A), also referred to as the null space of A is defined as follows.

ker (A) = {x : Ax = 0}

and to find ker (A) one must solve the system of equations Ax = 0.

This is not new! There is just some new terminology being used. To repeat, ker (A) is the
solution to the system Ax = 0.

Example 8.4.23 Let

A =




1 2 1
0 −1 1
2 3 3


 .

Find ker (A).

You need to solve the equation Ax = 0. To do this you write the augmented matrix and then
obtain the row reduced echelon form and the solution. The augmented matrix is




1 2 1 | 0
0 −1 1 | 0
2 3 3 | 0



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Next place this matrix in row reduced echelon form,



1 0 3 | 0
0 1 −1 | 0
0 0 0 | 0




Note that x1 and x2 are basic variables while x3 is a free variable. Therefore, the solution to this
system of equations, Ax = 0 is given by




3t
t
t


 : t ∈ R.

Example 8.4.24 Let

A =




1 2 1 0 1
2 −1 1 3 0
3 1 2 3 1
4 −2 2 6 0




Find the null space of A.

You need to solve the equation, Ax = 0. The augmented matrix is



1 2 1 0 1 | 0
2 −1 1 3 0 | 0
3 1 2 3 1 | 0
4 −2 2 6 0 | 0




Its row reduced echelon form is



1 0 3
5

6
5

1
5 | 0

0 1 1
5 − 3

5
2
5 | 0

0 0 0 0 0 | 0
0 0 0 0 0 | 0




It follows x1 and x2 are basic variables and x3, x4, x5 are free variables. Therefore, ker (A) is given
by 



(
− 3

5

)
s1 +

(−6
5

)
s2 +

(
1
5

)
s3(

− 1
5

)
s1 +

(
3
5

)
s2 +

(
− 2

5

)
s3

s1
s2
s3




: s1, s2, s3 ∈ R.

We write this in the form

s1




− 3
5

− 1
5
1
0
0




+ s2




−6
5
3
5
0
1
0




+ s3




1
5

− 2
5
0
0
1




: s1, s2, s3 ∈ R.

In other words, the null space of this matrix equals the span of the three vectors above. Thus

ker (A) = span







− 3
5

− 1
5
1
0
0



,




−6
5
3
5
0
1
0



,




1
5

− 2
5
0
0
1






.
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This is the same as

ker (A) = span







3
5
1
5
−1
0
0



,




6
5−3
5
0
−1
0



,




−1
5
2
5
0
0
−1






.

Notice also that the three vectors above are linearly independent and so the dimension of ker (A)
is 3. This is generally the way it works. The number of free variables equals the dimension of the
null space while the number of basic variables equals the number of pivot columns which equals the
rank. We state this in the following theorem.

Definition 8.4.25 The dimension of the null space of a matrix is called the nullity2 and written
as null (A) .

Theorem 8.4.26 Let A be an m× n matrix. Then rank (A) + null (A) = n.

8.4.6 Rank And Existence Of Solutions To Linear Systems

Consider the linear system of equations,
Ax = b (8.4)

where A is an m× n matrix, x is a n× 1 column vector, and b is an m× 1 column vector. Suppose

A =
(
a1 · · · an

)

where the ak denote the columns of A. Then x = (x1, · · · , xn)T is a solution of the system (8.4), if
and only if

x1a1 + · · ·+ xnan = b

which says that b is a vector in span (a1, · · · ,an) . This shows that there exists a solution to the
system, (8.4) if and only if b is contained in span (a1, · · · ,an) . In words, there is a solution to (8.4)
if and only if b is in the column space of A. In terms of rank, the following proposition describes
the situation.

Proposition 8.4.27 Let A be an m × n matrix and let b be an m × 1 column vector. Then there
exists a solution to (8.4) if and only if

rank
(
A | b

)
= rank (A) . (8.5)

Proof: Place
(
A | b

)
and A in row reduced echelon form, respectively B and C. If the

above condition on rank is true, then both B and C have the same number of nonzero rows. In
particular, you cannot have a row of the form

(
0 · · · 0 �

)

where � ̸= 0 in B. Therefore, there will exist a solution to the system (8.4).
Conversely, suppose there exists a solution. This means there cannot be such a row in B described

above. Therefore, B and C must have the same number of zero rows and so they have the same
number of nonzero rows. Therefore, the rank of the two matrices in (8.5) is the same. �

2Isn’t it amazing how many different words are available for use in linear algebra?
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8.5 Fredholm Alternative

There is a very useful version of Proposition 8.4.27 known as the Fredholm alternative. I will
only present this for the case of real matrices here. Later a much more elegant and general approach
is presented which allows for the general case of complex matrices.

The following definition is used to state the Fredholm alternative.

Definition 8.5.1 Let S ⊆ Rm. Then S⊥ ≡ {z ∈ Rm : z · s = 0 for every s ∈ S} . The funny expo-
nent, ⊥ is called “perp”.

Now note

ker
(
AT
)
≡
{
z : AT z = 0

}
=

{
z :

m∑

k=1

zkak = 0

}

Lemma 8.5.2 Let A be a real m× n matrix, let x ∈ Rn and y ∈ Rm. Then

(Ax · y) =
(
x·ATy

)

Proof: This follows right away from the definition of the dot product and matrix multiplication.

(Ax · y) =
∑

k,l

Aklxlyk

=
∑

k,l

(
AT
)
lk
xlyk

=
(
x ·ATy

)
. �

Now it is time to state the Fredholm alternative. The first version of this is the following theorem.

Theorem 8.5.3 Let A be a real m × n matrix and let b ∈ Rm. There exists a solution, x to the

equation Ax = b if and only if b ∈ ker
(
AT
)⊥

.

Proof: First suppose b ∈ ker
(
AT
)⊥
. Then this says that if ATx = 0, it follows that b · x = 0.

In other words, taking the transpose, if

xTA = 0, then b · x = 0.

In other words, letting x =(x1, · · · , xm)
T
, it follows that if

m∑

i=1

xiAij = 0 for each j,

then it follows ∑

i

bixi = 0.

In other words, if you get a row of zeros in row reduced echelon form for A then you the same row
operations produce a zero in the m× 1 matrix b.

Consequently
rank

(
A | b

)
= rank (A)

and so by Proposition 8.4.27, there exists a solution, x to the system Ax = b. It remains to go the
other direction.

Let z ∈ ker
(
AT
)
and suppose Ax = b. I need to verify b · z = 0. By Lemma 8.5.2,

b · z = Ax · z = x ·AT z = x · 0 = 0 �

This implies the following corollary which is also called the Fredholm alternative. The “alterna-
tive” becomes more clear in this corollary.
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Corollary 8.5.4 Let A be an m × n matrix. Then A maps Rn onto Rm if and only if the only
solution to ATx = 0 is x = 0.

Proof: If the only solution to ATx = 0 is x = 0, then ker
(
AT
)
= {0} and so ker

(
AT
)⊥

= Rm

because every b ∈ Rm has the property that b · 0 = 0. Therefore, Ax = b has a solution for any

b ∈ Rm because the b for which there is a solution are those in ker
(
AT
)⊥

by Theorem 8.5.3. In
other words, A maps Rn onto Rm.

Conversely if A is onto, then by Theorem 8.5.3 every b ∈ Rm is in ker
(
AT
)⊥

and so if ATx = 0,
then b · x = 0 for every b. In particular, this holds for b = x. Hence if ATx = 0, then x = 0. �

Here is an amusing example.

Example 8.5.5 Let A be an m× n matrix in which m > n. Then A cannot map onto Rm.

The reason for this is that AT is an n×m where m > n and so in the augmented matrix

(
AT |0

)

there must be some free variables. Thus there exists a nonzero vector x such that ATx = 0.

8.5.1 Row, Column, And Determinant Rank

I will now present a review of earlier topics and prove Theorem 8.3.4.

Definition 8.5.6 A sub-matrix of a matrix A is the rectangular array of numbers obtained by delet-
ing some rows and columns of A. Let A be an m×n matrix. The determinant rank of the matrix
equals r where r is the largest number such that some r × r sub-matrix of A has a non zero deter-
minant. The row rank is defined to be the dimension of the span of the rows. The column rank

is defined to be the dimension of the span of the columns.

Theorem 8.5.7 If A, an m × n matrix has determinant rank, r, then there exist r rows of the
matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (aij) equals r. Thus some r×r submatrix has non
zero determinant and there is no larger square submatrix which has non zero determinant. Suppose
such a submatrix is determined by the r columns whose indices are

j1 < · · · < jr

and the r rows whose indices are
i1 < · · · < ir

I want to show that every row is a linear combination of these rows. Consider the lth row and let p
be an index between 1 and n. Form the following (r + 1)× (r + 1) matrix




ai1j1 · · · ai1jr ai1p
...

...
...

airj1 · · · airjr airp
alj1 · · · aljr alp




Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth row is one of
the chosen ones. The above matrix has determinant 0. This is because if p /∈ {j1, · · · , jr} then the
above would be a submatrix of A which is too large to have non zero determinant. On the other
hand, if p ∈ {j1, · · · , jr} then the above matrix has two columns which are equal so its determinant
is still 0.
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Expand the determinant of the above matrix along the last column. Let Ck denote the cofactor
associated with the entry aikp. This is not dependent on the choice of p. Remember, you delete the
column and the row the entry is in and take the determinant of what is left and multiply by −1
raised to an appropriate power. Let C denote the cofactor associated with alp. This is given to be
nonzero, it being the determinant of the matrix




ai1j1 · · · ai1jr
...

...
airj1 · · · airjr




Thus

0 = alpC +

r∑

k=1

Ckaikp

which implies

alp =
r∑

k=1

−Ck

C
aikp ≡

r∑

k=1

mkaikp

Since this is true for every p and since mk does not depend on p, this has shown the lth row is a
linear combination of the i1, i2, · · · , ir rows. �

Corollary 8.5.8 The determinant rank equals the row rank.

Proof: From Theorem 8.5.7, the row rank is no larger than the determinant rank. Could the row
rank be smaller than the determinant rank? If so, there exist p rows for p < r such that the span of
these p rows equals the row space. But this implies that the r× r sub-matrix whose determinant is
nonzero also has row rank no larger than p which is impossible if its determinant is to be nonzero
because at least one row is a linear combination of the others. �

Corollary 8.5.9 If A has determinant rank, r, then there exist r columns of the matrix such that
every other column is a linear combination of these r columns. Also the column rank equals the
determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns of A
and the determinant rank of AT and A are the same. Therefore, from Corollary 8.5.8, column rank
of A = row rank of AT = determinant rank of AT = determinant rank of A. �

The following theorem is of fundamental importance and ties together many of the ideas presented
above.

Theorem 8.5.10 Let A be an n× n matrix. Then the following are equivalent.

1. det (A) = 0.

2. A,AT are not one to one.

3. A is not onto.

Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n. Therefore, there exist r
columns such that every other column is a linear combination of these columns by Theorem 8.5.7.
In particular, it follows that for some m, the mth column is a linear combination of all the others.
Thus letting A =

(
a1 · · · am · · · an

)
where the columns are denoted by ai, there exists

scalars, αi such that

am =
∑

k ̸=m

αkak.
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Now consider the column vector x ≡
(
α1 · · · −1 · · · αn

)T
. Then

Ax = −am +
∑

k ̸=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the same
argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x ̸= 0 such that

ATx = 0.

Taking the transpose of both sides yields

xTA = 0

where the 0 is a 1× n matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xTA

)
y = 0y = 0

contrary to x ̸= 0. Consequently there can be no y such that Ay = x and so A is not onto. This
shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det (A) ̸= 0 but then from Theorem 7.2.14 A−1

exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax = y. In fact x = A−1y.
Thus A would be onto contrary to 3.). This shows 3.) implies 1.) �

Corollary 8.5.11 Let A be an n× n matrix. Then the following are equivalent.

1. det(A) ̸= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem. �

Corollary 8.5.12 Let A be an invertible n×n matrix. Then A equals a finite product of elementary
matrices.

Proof: Since A−1 is given to exist, det (A) ̸= 0 and it follows A must have rank n and so the
row reduced echelon form of A is I. Therefore, by Theorem 8.1.6 there is a sequence of elementary
matrices, E1, · · · , Ep which accomplish successive row operations such that

(EpEp−1 · · ·E1)A = I.

But now multiply on the left on both sides by E−1
p then by E−1

p−1 and then by E−1
p−2 etc. until you

get
A = E−1

1 E−1
2 · · ·E−1

p−1E
−1
p

and by Theorem 8.1.6 each of these in this product is an elementary matrix. �

8.6 Exercises

1. Let {u1, · · · ,un} be vectors in Rn. The parallelepiped determined by these vectors

P (u1, · · · ,un)
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is defined as

P (u1, · · · ,un) ≡
{

n∑

k=1

tkuk : tk ∈ [0, 1] for all k

}
.

Now let A be an n× n matrix. Show that

{Ax : x ∈ P (u1, · · · ,un)}

is also a parallelepiped.

2. In the context of Problem 1, draw P (e1, e2) where e1, e2 are the standard basis vectors for
R2. Thus e1 = (1, 0) , e2 = (0, 1) . Now suppose

E =

(
1 1
0 1

)

where E is the elementary matrix which takes the third row and adds to the first. Draw

{Ex : x ∈ P (e1, e2)} .

In other words, draw the result of doing E to the vectors in P (e1, e2). Next draw the results
of doing the other elementary matrices to P (e1, e2).

3. In the context of Problem 1, either draw or describe the result of doing elementary matrices
to P (e1, e2, e3). Describe geometrically the conclusion of Corollary 8.5.12.

4. Determine which matrices are in row reduced echelon form.

(a)

(
1 2 0
0 1 7

)

(b)




1 0 0 0
0 0 1 2
0 0 0 0




(c)




1 1 0 0 0 5
0 0 1 2 0 4
0 0 0 0 1 3




5. Row reduce the following matrices to obtain the row reduced echelon form. List the pivot
columns in the original matrix.

(a)




1 2 0 3
2 1 2 2
1 1 0 3




(b)




1 2 3
2 1 −2
3 0 0
3 2 1




(c)




1 2 1 3
−3 2 1 0
3 2 1 1




6. Find the rank of the following matrices. If the rank is r, identify r columns in the origi-

nal matrix which have the property that every other column may be written as a linear
combination of these. Also find a basis for the row and column spaces of the matrices.
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(a)




1 2 0
3 2 1
2 1 0
0 2 1




(b)




1 0 0
4 1 1
2 1 0
0 2 0




(c)




0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4




(d)




0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2




(e)




0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1




7. Suppose A is an m×n matrix. Explain why the rank of A is always no larger than min (m,n) .

8. LetH denote span

((
1
2

)
,

(
2
4

)
,

(
1
3

))
. Find the dimension of H and determine a basis.

9. Let H denote span






1
2
0


 ,




2
4
0


 ,




1
3
1


 ,




0
1
1




 . Find the dimension of H and de-

termine a basis.

10. Let H denote span






1
2
0


 ,




1
4
0


 ,




1
3
1


 ,




0
1
1




 . Find the dimension of H and de-

termine a basis.

11. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Explain.

12. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.

13. Let w ∈ R4 and let M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0

}
. Is M a subspace? Explain.

14. LetM =
{
u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4

}
. IsM a subspace? Explain.

15. Let w,w1 be given vectors in R4 and define

M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0 and w1 · u = 0

}
.

Is M a subspace? Explain.

16. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

17. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

18. Study the definition of span. Explain what is meant by the span of a set of vectors. Include
pictures.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



8.6. EXERCISES 161

19. Suppose {x1, · · · ,xk} is a set of vectors from Fn. Show that span (x1, · · · ,xk) contains 0.

20. Study the definition of linear independence. Explain in your own words what is meant by
linear independence and linear dependence. Illustrate with pictures.

21. Use Corollary 8.4.17 to prove the following theorem: If A,B are n×n matrices and if AB = I,
then BA = I and B = A−1. Hint: First note that if AB = I, then it must be the case that
A is onto. Explain why this requires span (columns of A) = Fn. Now explain why, using the
corollary that this requires A to be one to one. Next explain why A (BA− I) = 0 and why
the fact that A is one to one implies BA = I.

22. Here are three vectors. Determine whether they are linearly independent or linearly dependent.




1
2
0


 ,




2
0
1


 ,




3
0
0




23. Here are three vectors. Determine whether they are linearly independent or linearly dependent.




4
2
0


 ,




2
2
1


 ,




0
2
2




24. Here are three vectors. Determine whether they are linearly independent or linearly dependent.




1
2
3


 ,




4
5
1


 ,




3
1
0




25. Here are four vectors. Determine whether they span R3. Are these vectors linearly indepen-
dent? 


1
2
3


 ,




4
3
3


 ,




3
1
0


 ,




2
4
6




26. Here are four vectors. Determine whether they span R3. Are these vectors linearly indepen-
dent? 


1
2
3


 ,




4
3
3


 ,




3
2
0


 ,




2
4
6




27. Determine whether the following vectors are a basis for R3. If they are, explain why they are
and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




4
3
3


 ,




1
2
0


 ,




2
4
0




28. Determine whether the following vectors are a basis for R3. If they are, explain why they are
and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
2
0



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29. Determine whether the following vectors are a basis for R3. If they are, explain why they are
and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
2
0


 ,




0
0
0




30. Determine whether the following vectors are a basis for R3. If they are, explain why they are
and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
1
3


 ,




0
0
0




31. Consider the vectors of the form







2t+ 3s
s− t
t+ s


 : s, t ∈ R



 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace and
find its dimension.

32. Consider the vectors of the form







2t+ 3s+ u
s− t
t+ s
u


 : s, t, u ∈ R




.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace and
find its dimension.

33. Consider the vectors of the form







2t+ u
t+ 3u
t+ s+ v

u


 : s, t, u, v ∈ R




.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace and
find its dimension.

34. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be concluded
they span F5? Explain.

35. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

36. Suppose A is an m × n matrix and {w1, · · · ,wk} is a linearly independent set of vectors in
A (Fn) ⊆ Fm. Now suppose A (zi) = wi. Show {z1, · · · , zk} is also independent.

37. Suppose V,W are subspaces of Fn. Show V ∩W defined to be all vectors which are in both V
and W is a subspace also.

38. Suppose V and W both have dimension equal to 7 and they are subspaces of F10. What are
the possibilities for the dimension of V ∩W? Hint: Remember that a linear independent set
can be extended to form a basis.
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39. Suppose V has dimension p andW has dimension q and they are each contained in a subspace,
U which has dimension equal to n where n > max (p, q) . What are the possibilities for the
dimension of V ∩W? Hint: Remember that a linear independent set can be extended to form
a basis.

40. If b ̸= 0, can the solution set of Ax = b be a plane through the origin? Explain.

41. Suppose a system of equations has fewer equations than variables and you have found a solution
to this system of equations. Is it possible that your solution is the only one? Explain.

42. Suppose a system of linear equations has a 2 × 4 augmented matrix and the last column is a
pivot column. Could the system of linear equations be consistent? Explain.

43. Suppose the coefficient matrix of a system of n equations with n variables has the property
that every column is a pivot column. Does it follow that the system of equations must have a
solution? If so, must the solution be unique? Explain.

44. Suppose there is a unique solution to a system of linear equations. What must be true of the
pivot columns in the augmented matrix.

45. State whether each of the following sets of data are possible for the matrix equation Ax = b.
If possible, describe the solution set. That is, tell whether there exists a unique solution no
solution or infinitely many solutions.

(a) A is a 5 × 6 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in the span
of four of the columns. Thus the columns are not independent.

(b) A is a 3× 4 matrix, rank (A) = 3 and rank (A|b) = 2.

(c) A is a 4 × 2 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in the span
of the columns and the columns must be independent.

(d) A is a 5 × 5 matrix, rank (A) = 4 and rank (A|b) = 5. Hint: This says b is not in the
span of the columns.

(e) A is a 4× 2 matrix, rank (A) = 2 and rank (A|b) = 2.

46. Suppose A is an m × n matrix in which m ≤ n. Suppose also that the rank of A equals m.
Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns in the row
reduced echelon form for A.

47. Suppose A is an m × n matrix in which m ≥ n. Suppose also that the rank of A equals n.
Show that A is one to one. Hint: If not, there exists a vector x such that Ax = 0, and this
implies at least one column of A is a linear combination of the others. Show this would require
the column rank to be less than n.

48. Explain why an n× n matrix A is both one to one and onto if and only if its rank is n.

49. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace is

{w1, · · · ,wk} .

Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk} be such that Bzi = wi and
argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .
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Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A)∩B (Fp) and so Bx =
∑k

i=1Bzi
showing that

x−
k∑

i=1

zi ∈ ker (B) .

50. Explain why Ax = 0 always has a solution even when A−1 does not exist.

(a) What can you conclude about A if the solution is unique?

(b) What can you conclude about A if the solution is not unique?

51. Suppose det (A− λI) = 0. Show using Theorem 9.2.9 there exists x ̸= 0 such that

(A− λI)x = 0.

52. Let A be an n × n matrix and let x be a nonzero vector such that Ax = λx for some scalar
λ. When this occurs, the vector x is called an eigenvector and the scalar λ is called an
eigenvalue. It turns out that not every number is an eigenvalue. Only certain ones are.
Why? Hint: Show that if Ax = λx, then (A− λI)x = 0. Explain why this shows that
(A− λI) is not one to one and not onto. Now use Theorem 9.2.9 to argue det (A− λI) = 0.
What sort of equation is this? How many solutions does it have?

53. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint: Consider
the n× n matrix A1 which is of the form

A1 ≡
(
A
0

)

where the 0 denotes an (n−m)× n matrix of zeros. Thus detA1 = 0 and so A1 is not one to
one. Now observe that A1x is the vector

A1x =

(
Ax
0

)

which equals zero if and only if Ax = 0. Do this using the Fredholm alternative.

54. Let A be an m× n real matrix and let b ∈ Rm. Show there exists a solution, x to the system

ATAx = ATb

Next show that if x,x1 are two solutions, then Ax = Ax1. Hint: First show that
(
ATA

)T
=

ATA. Next show if x ∈ ker
(
ATA

)
, then Ax = 0. Finally apply the Fredholm alternative. This

will give existence of a solution.

55. Show that in the context of Problem 54 that if x is the solution there, then |b−Ax| ≤ |b−Ay|
for every y. Thus Ax is the point of A (Rn) which is closest to b of every point in A (Rn).

56. Let A be an n× n matrix and consider the matrices
{
I, A,A2, · · · , An2

}
. Explain why there

exist scalars, ci not all zero such that

n2∑

i=1

ciA
i = 0.

Then argue there exists a polynomial, p (λ) of the form

λm + dm−1λ
m−1 + · · ·+ d1λ+ d0

such that p (A) = 0 and if q (λ) is another polynomial such that q (A) = 0, then q (λ) is of the
form p (λ) l (λ) for some polynomial, l (λ) . This extra special polynomial, p (λ) is called the

minimal polynomial. Hint: You might consider an n× n matrix as a vector in Fn2

.
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Linear Transformations

9.1 Linear Transformations

An m×n matrix can be used to transform vectors in Fn to vectors in Fm through the use of matrix
multiplication.

Example 9.1.1 Consider the matrix

(
1 2 0
2 1 0

)
. Think of it as a function which takes vectors

in F3 and makes them in to vectors in F2 as follows. For




x
y
z


 a vector in F3, multiply on the

left by the given matrix to obtain the vector in F2. Here are some numerical examples.

(
1 2 0
2 1 0

)


1
2
3


 =

(
5
4

)
,

(
1 2 0
2 1 0

)


1
−2
3


 =

(
−3
0

)
,

(
1 2 0
2 1 0

)


10
5
−3


 =

(
20
25

)
,

(
1 2 0
2 1 0

)


0
7
3


 =

(
14
7

)
,

More generally,
(

1 2 0
2 1 0

)


x
y
z


 =

(
x+ 2y
2x+ y

)

The idea is to define a function which takes vectors in F3 and delivers new vectors in F2.

This is an example of something called a linear transformation.

Definition 9.1.2 Let T : Fn 7→ Fm be a function. Thus for each x ∈ Fn, Tx ∈ Fm. Then T is a
linear transformation if whenever α, β are scalars and x1 and x2 are vectors in Fn,

T (αx1 + βx2) = α1Tx1 + βTx2.

A linear transformation is also called a homomorphism. In the case that T is in addition to this
one to one and onto, it is sometimes called an isomorphism.

The last two terms are typically used more in abstract algebra than in linear algebra so in this
book, such mappings will be referred to as linear transformations. In sloppy language, it distributes
across vector addition and you can factor out the scalars.

In words, linear transformations distribute across + and allow you to factor out scalars. At this
point, recall the properties of matrix multiplication. The pertinent property is (5.14) on Page 85.
Recall it states that for a and b scalars,

A (aB + bC) = aAB + bAC

165
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In particular, for A an m×n matrix and B and C, n×1 matrices (column vectors) the above formula
holds which is nothing more than the statement that matrix multiplication gives an example of a
linear transformation.

The reason this concept is so important is there are many examples of things which are linear
transformations. You might remember from calculus that the operator which consists of taking the
derivative is a linear transformation. That is, if f, g are functions (vectors) and α, β are numbers
(scalars)

d

dx
(αf + βg) = α

d

dx
f + β

d

dx
g

Another example of a linear transformation is that of rotation through an angle. For example,
I may want to rotate every vector through an angle of 45 degrees. Such a rotation would achieve
something like the following if applied to each vector corresponding to points on the picture which
is standing upright.

More generally, denote a rotation by T . Why is such a transformation linear? Consider the
following picture which illustrates a rotation.

T (a)

a

b ba+
bT (b)

T
(a

+
b
)

To get T (a+ b) , you can add Ta and Tb. Here is why. If you add Ta to Tb you get the
diagonal of the parallelogram determined by Ta and Tb. This diagonal also results from rotating
the diagonal of the parallelogram determined by a and b. This is because the rotation preserves
all angles between the vectors as well as their lengths. In particular, it preserves the shape of this
parallelogram. Thus both Ta + Tb and T (a+ b) give the same directed line segment. Thus T
distributes across + where + refers to vector addition. Similarly, if k is a number Tka = kTa
(draw a picture) and so you can factor out scalars also. Thus rotations are an example of a linear
transformation.

Definition 9.1.3 A linear transformation is called one to one (often written as 1− 1) if it never
takes two different vectors to the same vector. Thus T is one to one if whenever x ̸= y

Tx ̸= Ty.

Equivalently, if T (x) = T (y) , then x = y.
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In the case that a linear transformation comes from matrix multiplication, it is common usage
to refer to the matrix as a one to one matrix when the linear transformation it determines is one to
one.

Definition 9.1.4 A linear transformation mapping Fn to Fm is called onto if whenever y ∈ Fm

there exists x ∈ Fn such that T (x) = y.

Thus T is onto if everything in Fm gets hit. In the case that a linear transformation comes from
matrix multiplication, it is common to refer to the matrix as onto when the linear transformation it
determines is onto. Also it is common usage to write TFn, T (Fn) ,or Im (T ) as the set of vectors of
Fm which are of the form Tx for some x ∈ Fn. In the case that T is obtained from multiplication by
an m×n matrix A, it is standard to simply write A (Fn), AFn, or Im (A) to denote those vectors in
Fm which are obtained in the form Ax for some x ∈ Fn.

9.2 Constructing The Matrix Of A Linear Transformation

It turns out that if T is any linear transformation which maps Fn to Fm, there is always an m× n
matrix A with the property that

Ax = Tx (9.1)

for all x ∈ Fn. Here is why. Suppose T : Fn 7→ Fm is a linear transformation and you want to find
the matrix defined by this linear transformation as described in (9.1). Then if x ∈ Fn it follows

x =
n∑

i=1

xiei

where ei is the vector which has zeros in every slot but the ith and a 1 in this slot. Then since T is
linear,

Tx =
n∑

i=1

xiT (ei)

=




| |
T (e1) · · · T (en)

| |







x1
...
xn


 ≡ A




x1
...
xn




and so you see that the matrix desired is obtained from letting the ith column equal T (ei) .We state
this as the following theorem.

Theorem 9.2.1 Let T be a linear transformation from Fn to Fm. Then the matrix A satisfying
(9.1) is given by 


| |

T (e1) · · · T (en)
| |




where Tei is the ith column of A.

9.2.1 Rotations in R2

Sometimes you need to find a matrix which represents a given linear transformation which is de-
scribed in geometrical terms. The idea is to produce a matrix which you can multiply a vector by
to get the same thing as some geometrical description. A good example of this is the problem of
rotation of vectors discussed above. Consider the problem of rotating through an angle of θ.
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Example 9.2.2 Determine the matrix which represents the linear transformation defined by rotating
every vector through an angle of θ.

Let e1 ≡
(

1
0

)
and e2 ≡

(
0
1

)
. These identify the geometric vectors which point along the

positive x axis and positive y axis as shown.

✲

✻

e1

e2

✒

θ

■

θ

(cos(θ), sin(θ))(−sin(θ), cos(θ))
T (e1)

T (e2)

From the above, you only need to find Te1 and Te2, the first being the first column of the
desired matrix A and the second being the second column. From the definition of the cos, sin the
coordinates of T (e1) are as shown in the picture. The coordinates of T (e2) also follow from simple
trigonometry. Thus

Te1 =

(
cos θ
sin θ

)
, Te2 =

(
− sin θ
cos θ

)
.

Therefore, from Theorem 9.2.1,

A =

(
cos θ − sin θ
sin θ cos θ

)

For those who prefer a more algebraic approach, the definition of (cos (θ) , sin (θ)) is as the x and
y coordinates of the point (1, 0) . Now the point of the vector from (0, 0) to (0, 1), e2 is exactly π/2
further along along the unit circle. Therefore, when it is rotated through an angle of θ the x and y
coordinates are given by

(x, y) = (cos (θ + π/2) , sin (θ + π/2)) = (− sin θ, cos θ) .

Example 9.2.3 Find the matrix of the linear transformation which is obtained by first rotating all
vectors through an angle of φ and then through an angle θ. Thus you want the linear transformation
which rotates all angles through an angle of θ + φ.

Let Tθ+φ denote the linear transformation which rotates every vector through an angle of θ+ φ.
Then to get Tθ+φ, you could first do Tφ and then do Tθ where Tφ is the linear transformation which
rotates through an angle of φ and Tθ is the linear transformation which rotates through an angle of
θ. Denoting the corresponding matrices by Aθ+φ, Aφ, and Aθ, you must have for every x

Aθ+φx = Tθ+φx = TθTφx = AθAφx.

Consequently, you must have

Aθ+φ =

(
cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)
= AθAφ

=

(
cos θ − sin θ
sin θ cos θ

)(
cosφ − sinφ
sinφ cosφ

)
.
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You know how to multiply matrices. Do so to the pair on the right. This yields

(
cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)

=

(
cos θ cosφ− sin θ sinφ − cos θ sinφ− sin θ cosφ
sin θ cosφ+ cos θ sinφ cos θ cosφ− sin θ sinφ

)
.

Don’t these look familiar? They are the usual trig. identities for the sum of two angles derived here
using linear algebra concepts.

You do not have to stop with two dimensions. You can consider rotations and other geometric
concepts in any number of dimensions. This is one of the major advantages of linear algebra. You can
break down a difficult geometrical procedure into small steps, each corresponding to multiplication by
an appropriate matrix. Then by multiplying the matrices, you can obtain a single matrix which can
give you numerical information on the results of applying the given sequence of simple procedures.
That which you could never visualize can still be understood to the extent of finding exact numerical
answers. Another example follows.

Example 9.2.4 Find the matrix of the linear transformation which is obtained by first rotating all
vectors through an angle of π/6 and then reflecting through the x axis.

As shown in Example 9.2.3, the matrix of the transformation which involves rotating through an
angle of π/6 is (

cos (π/6) − sin (π/6)
sin (π/6) cos (π/6)

)
=

(
1
2

√
3 − 1

2
1
2

1
2

√
3

)

The matrix for the transformation which reflects all vectors through the x axis is

(
1 0
0 −1

)
.

Therefore, the matrix of the linear transformation which first rotates through π/6 and then reflects
through the x axis is

(
1 0
0 −1

)(
1
2

√
3 − 1

2
1
2

1
2

√
3

)
=

(
1
2

√
3 − 1

2

− 1
2 − 1

2

√
3

)
.

9.2.2 Rotations About A Particular Vector

The problem is to find the matrix of the linear transformation which rotates all vectors about a
given unit vector u which is possibly not one of the coordinate vectors i, j, or k. Suppose for |c| ̸= 1

u =(a, b, c) ,
√
a2 + b2 + c2 = 1.

First I will produce a matrix which maps u to k such that the right handed rotation about k

corresponds to the right handed rotation about u. Then I will rotate about k and finally, I will
multiply by the inverse of the first matrix to get the desired result.

To begin, find vectors w,v such that w × v = u. Let

w =

(
− b√

a2 + b2
,

a√
a2 + b2

, 0

)
.

✒u■w
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This vector is clearly perpendicular to u. Then v = (a, b, c) × w ≡ u×w. Thus from the
geometric description of the cross product, w × v = u. Computing the cross product gives

v =(a, b, c)×
(
− b√

a2 + b2
,

a√
a2 + b2

, 0

)

=

(
−c a√

(a2 + b2)
,−c b√

(a2 + b2)
,

a2√
(a2 + b2)

+
b2√

(a2 + b2)

)

Now I want to have Tw = i, Tv = j, Tu = k. What does this? It is the inverse of the matrix
which takes i to w, j to v, and k to u. This matrix is




− b√
a2+b2

− c√
(a2+b2)

a a

a√
a2+b2

− c√
(a2+b2)

b b

0 a2+b2√
a2+b2

c


 .

Its inverse is 


− 1√
(a2+b2)

b 1√
(a2+b2)

a 0

− c√
(a2+b2)

a − c√
(a2+b2)

b
√
(a2 + b2)

a b c




Therefore, the matrix which does the rotating is




− b√
a2+b2

− c√
(a2+b2)

a a

a√
a2+b2

− c√
(a2+b2)

b b

0 a2+b2√
a2+b2

c







cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 ·




− 1√
(a2+b2)

b 1√
(a2+b2)

a 0

− c√
(a2+b2)

a − c√
(a2+b2)

b
√
(a2 + b2)

a b c




This yields a matrix whose columns are




b2 cos θ+c2a2 cos θ+a4+a2b2

a2+b2

−ba cos θ+cb2 sin θ+ca2 sin θ+c2ab cos θ+ba3+b3a
a2+b2

− (sin θ) b− (cos θ) ca+ ca


 ,




−ba cos θ−ca2 sin θ−cb2 sin θ+c2ab cos θ+ba3+b3a
a2+b2

a2 cos θ+c2b2 cos θ+a2b2+b4

a2+b2

(sin θ) a− (cos θ) cb+ cb


 ,




(sin θ) b− (cos θ) ca+ ca
− (sin θ) a− (cos θ) cb+ cb(

a2 + b2
)
cos θ + c2




Using the assumption that u is a unit vector so that a2+b2+c2 = 1, it follows the desired matrix
is




cos θ − a2 cos θ + a2 −ba cos θ + ba− c sin θ (sin θ) b− (cos θ) ca+ ca
−ba cos θ + ba+ c sin θ −b2 cos θ + b2 + cos θ − (sin θ) a− (cos θ) cb+ cb

− (sin θ) b− (cos θ) ca+ ca (sin θ) a− (cos θ) cb+ cb
(
1− c2

)
cos θ + c2




This was done under the assumption that |c| ≠ 1. However, if this condition does not hold, you
can verify directly that the above still gives the correct answer.
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9.2.3 Projections

In Physics it is important to consider the work done by a force field on an object. This involves the
concept of projection onto a vector. Suppose you want to find the projection of a vector v onto the
given vector u, denoted by proju (v) This is done using the dot product as follows.

proj
u
(v) =

(v · u
u · u

)
u

Because of properties of the dot product, the map v 7→proj
u
(v) is linear,

proju (αv+βw) =

(
αv+βw · u

u · u

)
u = α

(v · u
u · u

)
u+ β

(w · u
u · u

)
u

= α proju (v) + β proju (w) .

Example 9.2.5 Let the projection map be defined above and let u =(1, 2, 3)
T
. Does this linear

transformation come from multiplication by a matrix? If so, what is the matrix?

You can find this matrix in the same way as in the previous example. Let ei denote the vec-
tor in Rn which has a 1 in the ith position and a zero everywhere else. Thus a typical vector
x =(x1, · · · , xn)T can be written in a unique way as

x =
n∑

j=1

xjej .

From the way you multiply a matrix by a vector, it follows that proj
u
(ei) gives the ith column of

the desired matrix. Therefore, it is only necessary to find

proju (ei) ≡
( ei·u
u · u

)
u

For the given vector in the example, this implies the columns of the desired matrix are

1

14




1
2
3


 ,

2

14




1
2
3


 ,

3

14




1
2
3


 .

Hence the matrix is

1

14




1 2 3
2 4 6
3 6 9


 .

9.2.4 Matrices Which Are One To One Or Onto

Lemma 9.2.6 Let A be an m×n matrix. Then A (Fn) = span (a1, · · · ,an) where a1, · · · ,an denote

the columns of A. In fact, for x = (x1, · · · , xn)T ,

Ax =
n∑

k=1

xkak.

Proof: This follows from the definition of matrix multiplication in Definition 5.1.9 on Page 80.
�

The following is a theorem of major significance. First here is an interesting observation.

Observation 9.2.7 Let A be an m×n matrix. Then A is one to one if and only if Ax = 0 implies
x = 0.
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Here is why: A0 = A (0+ 0) = A0+A0 and so A0 = 0.
Now suppose A is one to one and Ax = 0. Then since A0 = 0, it follows x = 0. Thus if A is one

to one and Ax = 0, then x = 0.
Next suppose the condition that Ax = 0 implies x = 0 is valid. Then if Ax = Ay, then

A (x− y) = 0 and so from the condition, x− y = 0 so that x = y. Thus A is one to one.

Theorem 9.2.8 Suppose A is an n×n matrix. Then A is one to one if and only if A is onto. Also,
if B is an n× n matrix and AB = I, then it follows BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · · , Aen} where ek is the
column vector which is all zeros except for a 1 in the kth position. This set of vectors is linearly
independent because if

n∑

k=1

ckAek = 0,

then since A is linear,

A

(
n∑

k=1

ckek

)
= 0

and since A is one to one, it follows
n∑

k=1

ckek = 0

which implies each ck = 0. Therefore, {Ae1, · · · , Aen} must be a basis for Fn by Corollary 8.4.17 on
Page 150. It follows that for y ∈ Fn there exist constants, ci such that

y =
n∑

k=1

ckAek = A

(
n∑

k=1

ckek

)

showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This implies the span of the columns of A equals Fn and by Corollary

8.4.17 this implies the columns of A are independent. If Ax = 0, then letting x = (x1, · · · , xn)T , it
follows

n∑

i=1

xiai = 0

and so each xi = 0. If Ax = Ay, then A (x− y) = 0 and so x = y. This shows A is one to one.
Now suppose AB = I. Why is BA = I? Since AB = I it follows B is one to one since otherwise,

there would exist, x ̸= 0 such that Bx = 0 and then ABx = A0 = 0 ̸= Ix. Therefore, from what
was just shown, B is also onto. In addition to this, A must be one to one because if Ay = 0, then
y = Bx for some x and then x = ABx = Ay = 0 showing y = 0. Now from what is given to be so,
it follows (AB)A = A and so using the associative law for matrix multiplication,

A (BA)−A = A (BA− I) = 0.

But this means (BA− I)x = 0 for all x since otherwise, A would not be one to one. Hence BA = I
as claimed. �

This theorem shows that if an n × n matrix B acts like an inverse when multiplied on one side
of A it follows that B = A−1and it will act like an inverse on both sides of A.

The conclusion of this theorem pertains to square matrices only. For example, let

A =




1 0
0 1
1 0


 , B =

(
1 0 0
1 1 −1

)
(9.2)
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Then

BA =

(
1 0
0 1

)

but

AB =




1 0 0
1 1 −1
1 0 0


 .

There is also an important characterization in terms of determinants. This is proved completely
in the section on the mathematical theory of the determinant.

Theorem 9.2.9 Let A be an n× n matrix and let TA denote the linear transformation determined
by A. Then the following are equivalent.

1. TA is one to one.

2. TA is onto.

3. det (A) ̸= 0.

9.2.5 The General Solution Of A Linear System

Recall the following definition which was discussed above.

Definition 9.2.10 T is a linear transformation if whenever x,y are vectors and a, b scalars,

T (ax+ by) = aTx+ bTy. (9.3)

Thus linear transformations distribute across addition and pass scalars to the outside. A linear
system is one which is of the form

Tx = b.

If Txp = b, then xp is called a particular solution to the linear system.

For example, if A is an m× n matrix and TA is determined by

TA (x) = Ax,

then from the properties of matrix multiplication, TA is a linear transformation. In this setting,
we will usually write A for the linear transformation as well as the matrix. There are many other
examples of linear transformations other than this. In differential equations, you will encounter
linear transformations which act on functions to give new functions. In this case, the functions are
considered as vectors. Don’t worry too much about this at this time. It will happen later. The
fundamental idea is that something is linear if (9.3) holds and if whenever a, b are scalars and x,y
are vectors ax+ by is a vector. That is you can add vectors and multiply by scalars.

Definition 9.2.11 Let T be a linear transformation. Define

ker (T ) ≡ {x : Tx = 0} .

In words, ker (T ) is called the kernel of T . As just described, ker (T ) consists of the set of all vectors
which T sends to 0. This is also called the null space of T . It is also called the solution space

of the equation Tx = 0.
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The above definition states that ker (T ) is the set of solutions to the equation,

Tx = 0.

In the case where T is really a matrix, you have been solving such equations for quite some time.
However, sometimes linear transformations act on vectors which are not in Fn. There is more on this
in Chapter 16 on Page 16 and this is discussed more carefully then. However, consider the following
familiar example.

Example 9.2.12 Let d
dx denote the linear transformation defined on X, the functions which are

defined on R and have a continuous derivative. Find ker
(

d
dx

)
.

The example asks for functions, f which the property that df
dx = 0. As you know from calculus,

these functions are the constant functions. Thus ker
(

d
dx

)
= constant functions.

When T is a linear transformation, systems of the form Tx = 0 are called homogeneous sys-

tems. Thus the solution to the homogeneous system is known as ker (T ) .
Systems of the form Tx = b where b ̸= 0 are called nonhomogeneous systems. It turns out

there is a very interesting and important relation between the solutions to the homogeneous systems
and the solutions to the nonhomogeneous systems.

Theorem 9.2.13 Suppose xp is a solution to the linear system,

Tx = b

Then if y is any other solution, there exists x ∈ ker (T ) such that

y = xp + x.

Proof: Consider y − xp ≡ y+(−1)xp. Then T
(
y − xp

)
= Ty − Txp = b− b = 0. Let

x ≡ y − xp.�

Sometimes people remember the above theorem in the following form. The solutions to the
nonhomogeneous system, Tx = b are given by xp + ker (T ) where xp is a particular solution to
Tx = b.

I have been vague about what T is and what x is on purpose. This theorem is completely
algebraic in nature and will work whenever you have linear transformations. In particular, it will be
important in differential equations. For now, here is a familiar example.

Example 9.2.14 Let

A =




1 2 3 0
2 1 1 2
4 5 7 2




Find ker (A). Equivalently, find the solution space to the system of equations Ax = 0.

This asks you to find {x : Ax = 0} . In other words you are asked to solve the system, Ax = 0.

Let x =(x, y, z, w)
T
. Then this amounts to solving




1 2 3 0
2 1 1 2
4 5 7 2







x
y
z
w


 =




0
0
0



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This is the linear system
x+ 2y + 3z = 0

2x+ y + z + 2w = 0
4x+ 5y + 7z + 2w = 0

and you know how to solve this using row operations, (Gauss Elimination). Set up the augmented
matrix 


1 2 3 0 | 0
2 1 1 2 | 0
4 5 7 2 | 0




Then row reduce to obtain the row reduced echelon form,




1 0 − 1
3

4
3 | 0

0 1 5
3 − 2

3 | 0

0 0 0 0 | 0


 .

This yields x = 1
3z − 4

3w and y = 2
3w − 5

3z. Thus ker (A) consists of vectors of the form,




1
3z − 4

3w

2
3w − 5

3z

z
w




= z




1
3

− 5
3

1
0


+ w




− 4
3

2
3

0
1


 .

Example 9.2.15 The general solution of a linear system of equations is just the set of all solu-
tions. Find the general solution to the linear system,




1 2 3 0
2 1 1 2
4 5 7 2







x
y
z
w


 =




9
7
25




given that
(
1 1 2 1

)T
=
(
x y z w

)T
is one solution.

Note the matrix on the left is the same as the matrix in Example 9.2.14. Therefore, from Theorem
9.2.13, you will obtain all solutions to the above linear system in the form

z




1
3

− 5
3

1
0


+ w




− 4
3

2
3

0
1


+




1
1
2
1


 .

9.3 Exercises

1. Study the definition of a linear transformation. State it from memory.

2. Show the map T : Rn 7→ Rm defined by T (x) = Ax where A is an m× n matrix and x is an
m× 1 column vector is a linear transformation.

3. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/3.
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4. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/4.

5. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of −π/3.

6. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of 2π/3.

7. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/12. Hint: Note that π/12 = π/3− π/4.

8. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of 2π/3 and then reflects across the x axis.

9. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/3 and then reflects across the x axis.

10. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/4 and then reflects across the x axis.

11. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of π/6 and then reflects across the x axis followed by a reflection across the y axis.

12. Find the matrix for the linear transformation which reflects every vector in R2 across the x
axis and then rotates every vector through an angle of π/4.

13. Find the matrix for the linear transformation which reflects every vector in R2 across the y
axis and then rotates every vector through an angle of π/4.

14. Find the matrix for the linear transformation which reflects every vector in R2 across the x
axis and then rotates every vector through an angle of π/6.

15. Find the matrix for the linear transformation which reflects every vector in R2 across the y
axis and then rotates every vector through an angle of π/6.

16. Find the matrix for the linear transformation which rotates every vector in R2 through an
angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

17. Find the matrix of the linear transformation which rotates every vector in R3 counter clockwise
about the z axis when viewed from the positive z axis through an angle of 30◦ and then reflects
through the xy plane.

✙x
✲y

✻
z

18. Find the matrix for proj
u
(v) where u = (1,−2, 3)

T
.

19. Find the matrix for proj
u
(v) where u = (1, 5, 3)

T
.

20. Find the matrix for proj
u
(v) where u = (1, 0, 3)

T
.

21. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear transformation.
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22. Show that

⟨v − proju (v) ,u⟩ ≡ (v − proju (v) ,u) ≡ (v − proju (v)) · u = 0

and conclude every vector in Rn can be written as the sum of two vectors, one which is
perpendicular and one which is parallel to the given vector.

23. Here are some descriptions of functions mapping Rn to Rn.

(a) T multiplies the jth component of x by a nonzero number b.

(b) T replaces the ith component of x with b times the jth component added to the ith

component.

(c) T switches two components.

Show these functions are linear and describe their matrices.

24. In Problem 23, sketch the effects of the linear transformations on the unit square in R2. Give
a geometric description of an arbitrary invertible matrix in terms of products of matrices of
these special matrices in Problem 23.

25. Let u = (a, b) be a unit vector in R2. Find the matrix which reflects all vectors across this
vector.

✶
✍ ✒u

Hint: You might want to notice that (a, b) = (cos θ, sin θ) for some θ. First rotate through −θ.
Next reflect through the x axis which is easy. Finally rotate through θ.

26. Let u be a unit vector. Show the linear transformation of the matrix I − 2uuT preserves all
distances and satisfies (

I − 2uuT
)T (

I − 2uuT
)
= I.

This matrix is called a Householder reflection. More generally, any matrix Q which satisfies
QTQ = QQT is called an orthogonal matrix. Show the linear transformation determined by
an orthogonal matrix always preserves the length of a vector in Rn. Hint: First either recall,
depending on whether you have done Problem 51 on Page 97, or show that for any matrix A,

⟨Ax,y⟩ =
⟨
x,ATy

⟩

27. Suppose |x| = |y| for x,y ∈ Rn. The problem is to find an orthogonal transformation Q, (see
Problem 26) which has the property that Qx = y and Qy = x. Show

Q ≡ I − 2
x− y

|x− y|2
(x− y)

T

does what is desired.

28. Let a be a fixed vector. The function Ta defined by Tav = a+ v has the effect of translating
all vectors by adding a. Show this is not a linear transformation. Explain why it is not possible
to realize Ta in R3 by multiplying by a 3× 3 matrix.

29. In spite of Problem 28 we can represent both translations and rotations by matrix multiplica-
tion at the expense of using higher dimensions. This is done by the homogeneous coordinates.
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I will illustrate in R3 where most interest in this is found. For each vector v = (v1, v2, v3)
T
,

consider the vector in R4 (v1, v2, v3, 1)
T
. What happens when you do




1 0 0 a1
0 1 0 a2
0 0 1 a3
0 0 0 1







v1
v2
v3
1


?

Describe how to consider both rotations and translations all at once by forming appropriate
4× 4 matrices.

30. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.




1 −1 2
1 −2 1
3 −4 5






x
y
z


 =




0
0
0


 .

31. Using Problem 30 find the general solution to the following linear system.



1 −1 2
1 −2 1
3 −4 5






x
y
z


 =




1
2
4


 .

32. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.




0 −1 2
1 −2 1
1 −4 5






x
y
z


 =




0
0
0


 .

33. Using Problem 32 find the general solution to the following linear system.



0 −1 2
1 −2 1
1 −4 5






x
y
z


 =




1
−1
1


 .

34. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.




1 −1 2
1 −2 0
3 −4 4






x
y
z


 =




0
0
0


 .

35. Using Problem 34 find the general solution to the following linear system.



1 −1 2
1 −2 0
3 −4 4






x
y
z


 =




1
2
4


 .

36. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.




0 −1 2
1 0 1
1 −2 5






x
y
z


 =




0
0
0


 .
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37. Using Problem 36 find the general solution to the following linear system.




0 −1 2
1 0 1
1 −2 5






x
y
z


 =




1
−1
1


 .

38. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.




1 0 1 1
1 −1 1 0
3 −1 3 2
3 3 0 3







x
y
z
w


 =




0
0
0
0


 .

39. Using Problem 38 find the general solution to the following linear system.




1 0 1 1
1 −1 1 0
3 −1 3 2
3 3 0 3







x
y
z
w


 =




1
2
4
3


 .

40. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.




1 1 0 1
2 1 1 2
1 0 1 1
0 0 0 0







x
y
z
w


 =




0
0
0
0


 .

41. Using Problem 40 find the general solution to the following linear system.




1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1







x
y
z
w


 =




2
−1
−3
0


 .

42. Give an example of a 3×2 matrix with the property that the linear transformation determined
by this matrix is one to one but not onto.

43. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.




1 1 0 1
1 −1 1 0
3 1 1 2
3 3 0 3







x
y
z
w


 =




0
0
0
0


 .

44. Using Problem 43 find the general solution to the following linear system.




1 1 0 1
1 −1 1 0
3 1 1 2
3 3 0 3







x
y
z
w


 =




1
2
4
3


 .
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45. Write the solution set of the following system as the span of vectors and find a basis for the
solution space of the following system.




1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1







x
y
z
w


 =




0
0
0
0


 .

46. Using Problem 45 find the general solution to the following linear system.




1 1 0 1
2 1 1 2
1 0 1 1
0 −1 1 1







x
y
z
w


 =




2
−1
−3
1


 .

47. Find ker (A) for

A =




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2


 .

Recall ker (A) is just the set of solutions to Ax = 0. It is the solution space to the system
Ax = 0.

48. Using Problem 47, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1
x2
x3
x4
x5




=




11
7
18
7




49. Using Problem 47, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1
x2
x3
x4
x5




=




6
7
13
7




50. Suppose Ax = b has a solution. Explain why the solution is unique precisely when Ax = 0

has only the trivial (zero) solution.

51. Show that if A is an m× n matrix, then ker (A) is a subspace.

52. Verify the linear transformation determined by the matrix of (9.2) maps R3 onto R2 but the
linear transformation determined by this matrix is not one to one.
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The LU Factorization

10.1 Definition Of An LU factorization

An LU factorization of a matrix involves writing the given matrix as the product of a lower triangular
matrix which has the main diagonal consisting entirely of ones L, and an upper triangular matrix U
in the indicated order. This is the version discussed here but it is sometimes the case that the L has
numbers other than 1 down the main diagonal. It is still a useful concept. The L goes with “lower”
and the U with “upper”. It turns out many matrices can be written in this way and when this is
possible, people get excited about slick ways of solving the system of equations, Ax = y. It is for
this reason that you want to study the LU factorization. It allows you to work only with triangular
matrices. It turns out that it takes about half as many operations to obtain an LU factorization as
it does to find the row reduced echelon form.

First it should be noted not all matrices have an LU factorization and so we will emphasize the
techniques for achieving it rather than formal proofs.

Example 10.1.1 Can you write

(
0 1
1 0

)
in the form LU as just described?

To do so you would need

(
1 0
x 1

)(
a b
0 c

)
=

(
a b
xa xb+ c

)
=

(
0 1
1 0

)
.

Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen and have a = 0.
Therefore, you can’t write this matrix in the form LU. It has no LU factorization. This is what we
mean above by saying the method lacks generality.

10.2 Finding An LU Factorization By Inspection

Which matrices have an LU factorization? It turns out it is those whose row reduced echelon form
can be achieved without switching rows and which only involve row operations of type 3 in which
row j is replaced with a multiple of row i added to row j for i < j.

Example 10.2.1 Find an LU factorization of A =




1 2 0 2
1 3 2 1
2 3 4 0


 .

One way to find the LU factorization is to simply look for it directly. You need




1 2 0 2
1 3 2 1
2 3 4 0


 =




1 0 0
x 1 0
y z 1






a d h j
0 b e i
0 0 c f


 .

181
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Then multiplying these you get



a d h j
xa xd+ b xh+ e xj + i
ya yd+ zb yh+ ze+ c yj + iz + f




and so you can now tell what the various quantities equal. From the first column, you need a = 1, x =
1, y = 2. Now go to the second column. You need d = 2, xd+ b = 3 so b = 1, yd+ zb = 3 so z = −1.
From the third column, h = 0, e = 2, c = 6. Now from the fourth column, j = 2, i = −1, f = −5.
Therefore, an LU factorization is




1 0 0
1 1 0
2 −1 1






1 2 0 2
0 1 2 −1
0 0 6 −5


 .

You can check whether you got it right by simply multiplying these two.

10.3 Using Multipliers To Find An LU Factorization

There is also a convenient procedure for finding an LU factorization. It turns out that it is only
necessary to keep track of the multipliers which are used to row reduce to upper triangular form.
This procedure is described in the following examples.

Example 10.3.1 Find an LU factorization for A =




1 2 3
2 1 −4
1 5 2




Write the matrix next to the identity matrix as shown.



1 0 0
0 1 0
0 0 1






1 2 3
2 1 −4
1 5 2


 .

The process involves doing row operations to the matrix on the right while simultaneously updating
successive columns of the matrix on the left. First take −2 times the first row and add to the second
in the matrix on the right. 


1 0 0
2 1 0
0 0 1






1 2 3
0 −3 −10
1 5 2




Note the way we updated the matrix on the left. We put a 2 in the second entry of the first column
because we used −2 times the first row added to the second row. Now replace the third row in the
matrix on the right by −1 times the first row added to the third. Notice that the product of the
two matrices is unchanged and equals the original matrix. This is because a row operation was done
on the original matrix to get the matrix on the right and then on the left, it was multiplied by an
elementary matrix which “undid” the row operation which was done.

The next step is 


1 0 0
2 1 0
1 0 1






1 2 3
0 −3 −10
0 3 −1




Again, the product is unchanged because we just did and then undid a row operation. Finally, we
will add the second row to the bottom row and make the following changes




1 0 0
2 1 0
1 −1 1






1 2 3
0 −3 −10
0 0 −11


 .
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At this point, we stop because the matrix on the right is upper triangular. An LU factorization is
the above.

The justification for this gimmick will be given later in a more general context.

Example 10.3.2 Find an LU factorization for A =




1 2 1 2 1
2 0 2 1 1
2 3 1 3 2
1 0 1 1 2


 .

◮◮

We will use the same procedure as above. However, this time we will do everything for one
column at a time. First multiply the first row by (−1) and then add to the last row. Next take (−2)
times the first and add to the second and then (−2) times the first and add to the third.




1 0 0 0
2 1 0 0
2 0 1 0
1 0 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 −1 −1 −1 0
0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. As in the above, what happened was
this. Lots of row operations were done and then these were undone by multiplying by the matrix
on the left. Thus the above product equals the original matrix. Now take − (1/4) times the second
row in the matrix on the right and add to the third followed by − (1/2) times the second added to
the last. 



1 0 0 0
2 1 0 0
2 1/4 1 0
1 1/2 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 0 −1 −1/4 1/4
0 0 0 1/2 3/2




This finishes the second column of L as well as the second column of U . Since the matrix on the
right is upper triangular, stop. The LU factorization has now been obtained. This technique is
called Dolittle’s method.

This process is entirely typical of the general case. The matrix U is just the first upper triangular
matrix you come to in your quest for the row reduced echelon form using only the row operation
which involves replacing a row by itself added to a multiple of another row. The matrix L is what
you get by updating the identity matrix as illustrated above.

You should note that for a square matrix, the number of row operations necessary to reduce to
LU form is about half the number needed to place the matrix in row reduced echelon form. This is
why an LU factorization is of interest in solving systems of equations.

10.4 Solving Systems Using The LU Factorization

One reason people care about the LU factorization is it allows the quick solution of systems of
equations. Here is an example.

Example 10.4.1 Suppose you want to find the solutions to




1 2 3 2
4 3 1 1
1 2 3 0







x
y
z
w


 =




1
2
3


 .

Of course one way is to write the augmented matrix and grind away. However, this involves
more row operations than the computation of the LU factorization and it turns out that the LU
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factorization can give the solution quickly. Here is how. The following is an LU factorization for
the matrix. 


1 2 3 2
4 3 1 1
1 2 3 0


 =




1 0 0
4 1 0
1 0 1






1 2 3 2
0 −5 −11 −7
0 0 0 −2


 .

Let Ux = y and consider Ly = b where in this case, b =(1, 2, 3)
T
. Thus




1 0 0
4 1 0
1 0 1






y1
y2
y3


 =




1
2
3




which yields very quickly that y =




1
−2
2


 . Now you can find x by solving Ux = y. Thus in this

case,



1 2 3 2
0 −5 −11 −7
0 0 0 −2







x
y
z
w


 =




1
−2
2




which yields

x =




− 3
5 + 7

5 t

9
5 − 11

5 t

t
−1



, t ∈ R.

10.5 Justification For The Multiplier Method

Why does the multiplier method work for finding the LU factorization? Suppose A is a matrix
which has the property that the row reduced echelon form for A may be achieved using only the
row operations which involve replacing a row with itself added to a multiple of another row. It is
not ever necessary to switch rows. Thus every row which is replaced using this row operation in
obtaining the echelon form may be modified by using a row which is above it.

Lemma 10.5.1 Let L be a lower (upper) triangular matrix m×m which has ones down the main
diagonal. Then L−1 also is a lower (upper) triangular matrix which has ones down the main diagonal.
Also L−1 is obtained from L by simply multiplying each entry below the main diagonal in L with −1.

Proof: Consider the usual setup for finding the inverse
(
L I

)
. Then each row operation

done to L to reduce to row reduced echelon form results in changing only the entries in I below the
main diagonal and also the resulting entry on the right of the above m× 2m matrix below the main
diagonal is just −1 times the corresponding entry in L. �

Now let A be an m× n matrix, say

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



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and assume A can be row reduced to an upper triangular form using only row operation 3. Thus,
in particular, a11 ̸= 0. Multiply on the left by E1 =




1 0 · · · 0
−a21

a11
1 · · · 0

...
...

. . .
...

−am1

a11
0 · · · 1




This is the product of elementary matrices which make modifications in the first column only. It is
equivalent to taking −a21/a11 times the first row and adding to the second. Then taking −a31/a11
times the first row and adding to the third and so forth. The quotients in the first column of the
above matrix are the multipliers. Thus the result is of the form

E1A =




a11 a12 · · · a′1n
0 a′22 · · · a′2n
...

...
...

0 a′m2 · · · a′mn




By assumption, a′22 ̸= 0 and so it is possible to use this entry to zero out all the entries below it in

the matrix on the right by multiplication by a matrix of the form E2 =

(
1 0

0 E

)
where E is an

(m− 1)× (m− 1) matrix of the form




1 0 · · · 0

−a′
32

a′
22

1 · · · 0

...
...

. . .
...

−a′
m2

a′
22

0 · · · 1




Again, the entries in the first column below the 1 are the multipliers. Continuing this way, zeroing
out the entries below the diagonal entries, finally leads to

Em−1En−2 · · ·E1A = U

where U is upper triangular. Each Ej has all ones down the main diagonal and is lower triangular.
Now multiply both sides by the inverses of the Ej in the reverse order. This yields

A = E−1
1 E−1

2 · · ·E−1
m−1U

By Lemma 10.5.1, this implies that the product of those E−1
j is a lower triangular matrix having all

ones down the main diagonal.
The above discussion and lemma gives the justification for the multiplier method. The expressions

−a21/a11,−a31/a11, · · · − am1/a11

denoted respectively by m21, · · · ,mm1 to save notation which were obtained in building E1 are the
multipliers. . Then according to the lemma, to find E−1

1 you simply write




1 0 · · · 0
−m21 1 · · · 0

...
...

. . .
...

−mm1 0 · · · 1



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Similar considerations apply to the other E−1
j . Thus L is of the form




1 0 · · · 0 0
−m21 1 · · · 0 0

...
...

. . .
...

...
−m(m−1)1 0 · · · 1 0
−mm1 0 · · · 0 1







1 0 · · · 0 0
0 1 · · · 0 0
... −m32

. . .
...

...

0
... · · · 1 0

0 −mm2 · · · 0 1




· · ·




1 0 · · · 0 0
0 1 · · · 0 0
... 0

. . .
...

...

0
... · · · 1 0

0 0 · · · −mmm−1 1




It follows from Theorem 8.1.6 about the effect of multiplying on the left by an elementary matrix
that the above product is of the form




1 0 · · · 0 0
−m21 1 · · · 0 0

... −m32
. . .

...
...

−m(m−1)1

... · · · 1 0
−mm1 −mm2 · · · −mmm−1 1




In words, beginning at the left column and moving toward the right, you simply insert, into the
corresponding position in the identity matrix, −1 times the multiplier which was used to zero out
an entry in that position below the main diagonal in A, while retaining the main diagonal which
consists entirely of ones. This is L.

10.6 The PLU Factorization

As indicated above, some matrices don’t have an LU factorization. Here is an example.

M =




1 2 3 2
1 2 3 0
4 3 1 1


 (10.1)

In this case, there is another factorization which is useful called a PLU factorization. Here P is a
permutation matrix.

Example 10.6.1 Find a PLU factorization for the above matrix in (10.1).

Proceed as before trying to find the row echelon form of the matrix. First add −1 times the first
row to the second row and then add −4 times the first to the third. This yields




1 0 0
1 1 0
4 0 1






1 2 3 2
0 0 0 −2
0 −5 −11 −7




There is no way to do only row operations involving replacing a row with itself added to a multiple
of another row to the matrix on the right in such a way as to obtain an upper triangular matrix.
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Therefore, consider the original matrix with the bottom two rows switched.

M ′ =




1 2 3 2
4 3 1 1
1 2 3 0


 =




1 0 0
0 0 1
0 1 0






1 2 3 2
1 2 3 0
4 3 1 1




= PM

Now try again with this matrix. First take −1 times the first row and add to the bottom row and
then take −4 times the first row and add to the second row. This yields




1 0 0
4 1 0
1 0 1






1 2 3 2
0 −5 −11 −7
0 0 0 −2




The matrix on the right is upper triangular and so the LU factorization of the matrix M ′ has been
obtained above.

Thus M ′ = PM = LU where L and U are given above. Notice that P 2 = I and therefore,
M = P 2M = PLU and so


1 2 3 2
1 2 3 0
4 3 1 1


 =




1 0 0
0 0 1
0 1 0






1 0 0
4 1 0
1 0 1






1 2 3 2
0 −5 −11 −7
0 0 0 −2




This process can always be followed and so there always exists a PLU factorization of a given
matrix even though there isn’t always an LU factorization.

Example 10.6.2 Use the PLU factorization of M ≡




1 2 3 2
1 2 3 0
4 3 1 1


 to solve the systemMx = b

where b =(1, 2, 3)
T
.

Let Ux = y and consider PLy = b. In other words, solve,



1 0 0
0 0 1
0 1 0






1 0 0
4 1 0
1 0 1






y1
y2
y3


 =




1
2
3


 .

Multiplying both sides by P gives



1 0 0
4 1 0
1 0 1






y1
y2
y3


 =




1
3
2




and so

y =




y1
y2
y3


 =




1
−1
1


 .

Now Ux = y and so it only remains to solve




1 2 3 2
0 −5 −11 −7
0 0 0 −2







x1
x2
x3
x4


 =




1
−1
1




which yields



x1
x2
x3
x4


 =




1
5 + 7

5 t

9
10 − 11

5 t

t
− 1

2




: t ∈ R.
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10.7 The QR Factorization

As pointed out above, the LU factorization is not a mathematically respectable thing because it
does not always exist. There is another factorization which does always exist. Much more can be
said about it than I will say here. I will only deal with real matrices and so the dot product will be
the usual real dot product.

Definition 10.7.1 An n× n real matrix Q is called an orthogonal matrix if

QQT = QTQ = I.

Thus an orthogonal matrix is one whose inverse is equal to its transpose.

First note that if a matrix is orthogonal this says

∑

j

QT
ijQjk =

∑

j

QjiQjk = δik

Thus

|Qx|2 =
∑

i


∑

j

Qijxj




2

=
∑

i

∑

r

∑

s

QisxsQirxr

=
∑

i

∑

r

∑

s

QisQirxsxr =
∑

r

∑

s

∑

i

QisQirxsxr

=
∑

r

∑

s

δsrxsxr =
∑

r

x2r = |x|2

This shows that orthogonal transformations preserve distances. You can show that if you have a
matrix which does preserve distances, then it must be orthogonal also.

Example 10.7.2 One of the most important examples of an orthogonal matrix is the so called
Householder matrix. You have v a unit vector and you form the matrix

I − 2vvT

This is an orthogonal matrix which is also symmetric. To see this, you use the rules of matrix
operations.

(
I − 2vvT

)T
= IT −

(
2vvT

)T

= I − 2vvT

so it is symmetric. Now to show it is orthogonal,

(
I − 2vvT

) (
I − 2vvT

)
= I − 2vvT − 2vvT + 4vvTvvT

= I − 4vvT + 4vvT = I

because vTv = v · v = |v|2 = 1. Therefore, this is an example of an orthogonal matrix.

Consider the following problem.

Problem 10.7.3 Given two vectors x,y such that |x| = |y| ̸= 0 but x ̸= y and you want an
orthogonal matrix Q such that Qx = y and Qy = x. The thing which works is the Householder
matrix

Q ≡ I − 2
x− y

|x− y|2
(x− y)

T
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Here is why this works.

Q (x− y) = (x− y)− 2
x− y

|x− y|2
(x− y)

T
(x− y)

= (x− y)− 2
x− y

|x− y|2
|x− y|2 = y − x

Q (x+ y) = (x+ y)− 2
x− y

|x− y|2
(x− y)

T
(x+ y)

= (x+ y)− 2
x− y

|x− y|2
((x− y) · (x+ y))

= (x+ y)− 2
x− y

|x− y|2
(
|x|2 − |y|2

)
= x+ y

Hence

Qx+Qy = x+ y

Qx−Qy = y − x

Adding these equations, 2Qx = 2y and subtracting them yields 2Qy = 2x.

A picture of the geometric significance follows.

x

y

The orthogonal matrix Q reflects across the dotted line taking x to y and y to x.

Definition 10.7.4 Let A be anm×n matrix. Then a QR factorization of A consists of two matrices,
Q orthogonal and R upper triangular or in other words equal to zero below the main diagonal such
that A = QR.

With the solution to this simple problem, here is how to obtain a QR factorization for any matrix
A. Let

A = (a1,a2, · · · ,an)
where the ai are the columns. If a1 = 0, let Q1 = I. If a1 ̸= 0, let

b ≡




|a1|
0
...
0




and form the Householder matrix

Q1 ≡ I − 2
(a1 − b)

|a1 − b|2
(a1 − b)

T
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As in the above problem Q1a1 = b and so

Q1A =

(
|a1| ∗
0 A2

)

where A2 is a m − 1 × n − 1 matrix. Now find in the same way as was just done a n − 1 × n − 1
matrix Q̂2 such that

Q̂2A2 =

(
∗ ∗
0 A3

)

Let

Q2 ≡
(

1 0

0 Q̂2

)
.

Then

Q2Q1A =

(
1 0

0 Q̂2

)(
|a1| ∗
0 A2

)

=




|a1| ∗ ∗
... ∗ ∗
0 0 A3




Continuing this way until the result is upper triangular, you get a sequence of orthogonal matrices
QpQp−1 · · ·Q1 such that

QpQp−1 · · ·Q1A = R (10.2)

where R is upper triangular.
Now if Q1 and Q2 are orthogonal, then from properties of matrix multiplication,

Q1Q2 (Q1Q2)
T
= Q1Q2Q

T
2Q

T
1 = Q1IQ

T
1 = I

and similarly
(Q1Q2)

T
Q1Q2 = I.

Thus the product of orthogonal matrices is orthogonal. Also the transpose of an orthogonal matrix
is orthogonal directly from the definition. Therefore, from (10.2)

A = (QpQp−1 · · ·Q1)
T
R ≡ QR,

where Q is orthogonal. This proves the following theorem.

Theorem 10.7.5 Let A be any real m × n matrix. Then there exists an orthogonal matrix Q and
an upper triangular matrix R having nonnegative entries down the main diagonal such that

A = QR

and this factorization can be accomplished in a systematic manner.

◮ ◮

10.8 Exercises

1. Find an LU factorization of




1 2 0
2 1 3
1 2 3


 .
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2. Find an LU factorization of




1 2 3 2
1 3 2 1
5 0 1 3


 .

3. Find an LU factorization of the matrix




1 −2 −5 0
−2 5 11 3
3 −6 −15 1


 .

4. Find an LU factorization of the matrix




1 −1 −3 −1
−1 2 4 3
2 −3 −7 −3


 .

5. Find an LU factorization of the matrix




1 −3 −4 −3
−3 10 10 10
1 −6 2 −5


 .

6. Find an LU factorization of the matrix




1 3 1 −1
3 10 8 −1
2 5 −3 −3


 .

7. Find an LU factorization of the matrix




3 −2 1
9 −8 6
−6 2 2
3 2 −7


 .

8. Find an LU factorization of the matrix




−3 −1 3
9 9 −12
3 19 −16
12 40 −26


 .

9. Find an LU factorization of the matrix




−1 −3 −1
1 3 0
3 9 0
4 12 16


 .

10. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to solve
the system of equations.

x+ 2y = 5
2x+ 3y = 6

11. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to solve
the system of equations.

x+ 2y + z = 1
y + 3z = 2
2x+ 3y = 6

12. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to solve
the system of equations.

x+ 2y + 3z = 5
2x+ 3y + z = 6
x− y + z = 2
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13. Find the LU factorization of the coefficient matrix using Dolittle’s method and use it to solve
the system of equations.

x+ 2y + 3z = 5
2x+ 3y + z = 6
3x+ 5y + 4z = 11

14. Is there only one LU factorization for a given matrix? Hint: Consider the equation

(
0 1
0 1

)
=

(
1 0
1 1

)(
0 1
0 0

)
.

Look for all possible LU factorizations.

15. Find a PLU factorization of




1 2 1
1 2 2
2 1 1


 .

16. Find a PLU factorization of




1 2 1 2 1
2 4 2 4 1
1 2 1 3 2


 .

17. Find a PLU factorization of




1 2 1
1 2 2
2 4 1
3 2 1


 .

18. Find a PLU factorization of




1 2 1
2 4 1
1 0 2
2 2 1


 and use it to solve the systems

(a)




1 2 1
2 4 1
1 0 2
2 2 1







x
y
z


 =




1
2
1
1




(b)




1 2 1
2 4 1
1 0 2
2 2 1







x
y
z


 =




a
b
c
d




19. Find a PLU factorization of




0 2 1 2
2 1 −2 0
2 3 −1 2


 and use it to solve the systems

(a)




0 2 1 2
2 1 −2 0
2 3 −1 2







x
y
z
w


 =




1
1
2




(b)




0 2 1 2
2 1 −2 0
2 3 −1 2







x
y
z
w


 =




2
1
3



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20. Find a QR factorization for the matrix




1 2 1
3 −2 1
1 0 2




21. Find a QR factorization for the matrix




1 2 1 0
3 0 1 1
1 0 2 1




22. If you had a QR factorization, A = QR, describe how you could use it to solve the equation
Ax = b. This is not usually the way people solve this equation. However, the QR factor-
ization is of great importance in certain other problems, especially in finding eigenvalues and
eigenvectors.
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Linear Programming

11.1 Simple Geometric Considerations

One of the most important uses of row operations is in solving linear program problems which involve
maximizing a linear function subject to inequality constraints determined from linear equations.
Here is an example. A certain hamburger store has 9000 hamburger patties to use in one week
and a limitless supply of special sauce, lettuce, tomatoes, onions, and buns. They sell two types of
hamburgers, the big stack and the basic burger. It has also been determined that the employees
cannot prepare more than 9000 of either type in one week. The big stack, popular with the teenagers
from the local high school, involves two patties, lots of delicious sauce, condiments galore, and a
divider between the two patties. The basic burger, very popular with children, involves only one
patty and some pickles and ketchup. Demand for the basic burger is twice what it is for the big
stack. What is the maximum number of hamburgers which could be sold in one week given the
above limitations?

Let x be the number of basic burgers and y the number of big stacks which could be sold in
a week. Thus it is desired to maximize z = x + y subject to the above constraints. The total
number of patties is 9000 and so the number of patty used is x + 2y. This number must satisfy
x+2y ≤ 9000 because there are only 9000 patty available. Because of the limitation on the number
the employees can prepare and the demand, it follows 2x + y ≤ 9000. You never sell a negative
number of hamburgers and so x, y ≥ 0. In simpler terms the problem reduces to maximizing z = x+y
subject to the two constraints, x + 2y ≤ 9000 and 2x + y ≤ 9000. This problem is pretty easy to
solve geometrically. Consider the following picture in which R labels the region described by the
above inequalities and the line z = x+ y is shown for a particular value of z.

x+ 2y = 4

2x+ y = 4

R

x+ y = z

As you make z larger this line moves away from the origin, always having the same slope and
the desired solution would consist of a point in the region, R which makes z as large as possible or
equivalently one for which the line is as far as possible from the origin. Clearly this point is the point
of intersection of the two lines, (3000, 3000) and so the maximum value of the given function is 6000.
Of course this type of procedure is fine for a situation in which there are only two variables but what
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about a similar problem in which there are very many variables. In reality, this hamburger store
makes many more types of burgers than those two and there are many considerations other than
demand and available patty. Each will likely give you a constraint which must be considered in order
to solve a more realistic problem and the end result will likely be a problem in many dimensions,
probably many more than three so your ability to draw a picture will get you nowhere for such a
problem. Another method is needed. This method is the topic of this section. I will illustrate with
this particular problem. Let x1 = x and y = x2. Also let x3 and x4 be nonnegative variables such
that

x1 + 2x2 + x3 = 9000, 2x1 + x2 + x4 = 9000.

To say that x3 and x4 are nonnegative is the same as saying x1 + 2x2 ≤ 9000 and 2x1 + x2 ≤ 9000
and these variables are called slack variables at this point. They are called this because they “take
up the slack”. I will discuss these more later. First a general situation is considered.

11.2 The Simplex Tableau

Here is some notation.

Definition 11.2.1 Let x,y be vectors in Rq. Then x ≤ y means for each i, xi ≤ yi.

The problem is as follows:
Let A be an m × (m+ n) real matrix of rank m. It is desired to find x ∈ Rn+m such that x

satisfies the constraints,
x ≥ 0, Ax = b (11.1)

and out of all such x,

z ≡
m+n∑

i=1

cixi

is as large (or small) as possible. This is usually referred to as maximizing or minimizing z subject
to the above constraints. First I will consider the constraints.

Let A =
(
a1 · · · an+m

)
. First you find a vector x0≥ 0, Ax0= b such that n of the com-

ponents of this vector equal 0. Letting i1, · · · , in be the positions of x0 for which x0i = 0, suppose
also that {aj1 , · · · ,ajm} is linearly independent for ji the other positions of x0. Geometrically, this
means that x0 is a corner of the feasible region, those x which satisfy the constraints. This is called
a basic feasible solution. Also define

cB ≡ (cj1 . · · · , cjm) , cF ≡ (ci1 , · · · , cin)
xB ≡ (xj1 , · · · , xjm) , xF ≡ (xi1 , · · · , xin) .

and

z0 ≡ z
(
x0
)
=
(
cB cF

)( x0
B

x0
F

)
= cBx

0
B

since x0
F = 0. The variables which are the components of the vector xB are called the basic

variables and the variables which are the entries of xF are called the free variables. You set

xF = 0. Now
(
x0, z0

)T
is a solution to

(
A 0

−c 1

)(
x

z

)
=

(
b

0

)

along with the constraints x ≥ 0. Writing the above in augmented matrix form yields

(
A 0 b

−c 1 0

)
(11.2)
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Permute the columns and variables on the left if necessary to write the above in the form

(
B F 0

−cB −cF 1

)


xB

xF

z


 =

(
b

0

)
(11.3)

or equivalently in the augmented matrix form keeping track of the variables on the bottom as




B F 0 b

−cB −cF 1 0
xB xF 0 0


 . (11.4)

Here B pertains to the variables xi1 , · · · , xjm and is an m × m matrix with linearly independent
columns, {aj1 , · · · ,ajm} , and F is an m× n matrix. Now it is assumed that

(
B F

)( x0
B

x0
F

)
=
(
B F

)( x0
B

0

)
= Bx0

B = b

and since B is assumed to have rank m, it follows

x0
B = B−1b ≥ 0. (11.5)

This is very important to observe. B−1b ≥ 0! This is by the assumption that x0 ≥ 0.
Do row operations on the top part of the matrix

(
B F 0 b

−cB −cF 1 0

)
(11.6)

and obtain its row reduced echelon form. Then after these row operations the above becomes

(
I B−1F 0 B−1b

−cB −cF 1 0

)
. (11.7)

where B−1b ≥ 0. Next do another row operation in order to get a 0 where you see a −cB . Thus

(
I B−1F 0 B−1b

0 cBB
−1F ′ − cF 1 cBB

−1b

)
(11.8)

=

(
I B−1F 0 B−1b

0 cBB
−1F ′ − cF 1 cBx

0
B

)

=

(
I B−1F 0 B−1b

0 cBB
−1F − cF 1 z0

)
(11.9)

The reason there is a z0 on the bottom right corner is that xF = 0 and
(
x0
B ,x

0
F , z

0
)T

is a solution
of the system of equations represented by the above augmented matrix because it is a solution to
the system of equations corresponding to the system of equations represented by (11.6) and row
operations leave solution sets unchanged. Note how attractive this is. The z0 is the value of z at
the point x0. The augmented matrix of (11.9) is called the simplex tableau and it is the beginning
point for the simplex algorithm to be described a little later. It is very convenient to express the
simplex tableau in the above form in which the variables are possibly permuted in order to have(
I
0

)
on the left side. However, as far as the simplex algorithm is concerned it is not necessary

to be permuting the variables in this manner. Starting with (11.9) you could permute the variables
and columns to obtain an augmented matrix in which the variables are in their original order. What
is really required for the simplex tableau?
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It is an augmented m+ 1×m+ n+ 2 matrix which represents a system of equations which has
the same set of solutions, (x,z)

T
as the system whose augmented matrix is

(
A 0 b

−c 1 0

)

(Possibly the variables for x are taken in another order.) There are m linearly independent columns
in the first m + n columns for which there is only one nonzero entry, a 1 in one of the first m
rows, the “simple columns”, the other first m + n columns being the “nonsimple columns”. As in
the above, the variables corresponding to the simple columns are xB , the basic variables and those
corresponding to the nonsimple columns are xF , the free variables. Also, the top m entries of the
last column on the right are nonnegative. This is the description of a simplex tableau.

In a simplex tableau it is easy to spot a basic feasible solution. You can see one quickly by
setting the variables, xF corresponding to the nonsimple columns equal to zero. Then the other
variables, corresponding to the simple columns are each equal to a nonnegative entry in the far right
column. Lets call this an “obvious basic feasible solution”. If a solution is obtained by setting
the variables corresponding to the nonsimple columns equal to zero and the variables corresponding
to the simple columns equal to zero this will be referred to as an “obvious” solution. Lets also call
the first m + n entries in the bottom row the “bottom left row”. In a simplex tableau, the entry
in the bottom right corner gives the value of the variable being maximized or minimized when the
obvious basic feasible solution is chosen.

The following is a special case of the general theory presented above and shows how such a
special case can be fit into the above framework. The following example is rather typical of the sorts
of problems considered. It involves inequality constraints instead of Ax = b. This is handled by
adding in “slack variables” as explained below.

The idea is to obtain an augmented matrix for the constraints such that obvious solutions are
also feasible. Then there is an algorithm, to be presented later, which takes you from one obvious
feasible solution to another until you obtain the maximum.

Example 11.2.2 Consider z = x1 − x2 subject to the constraints, x1 + 2x2 ≤ 10, x1 + 2x2 ≥ 2,
and 2x1 + x2 ≤ 6, xi ≥ 0. Find a simplex tableau for a problem of the form x ≥ 0,Ax = b which is
equivalent to the above problem.

You add in slack variables. These are positive variables, one for each of the first three constraints,
which change the first three inequalities into equations. Thus the first three inequalities become
x1 + 2x2 + x3 = 10, x1 + 2x2 − x4 = 2, and 2x1 + x2 + x5 = 6, x1, x2, x3, x4, x5 ≥ 0. Now it
is necessary to find a basic feasible solution. You mainly need to find a positive solution to the
equations,

x1 + 2x2 + x3 = 10
x1 + 2x2 − x4 = 2
2x1 + x2 + x5 = 6

.

the solution set for the above system is given by

x2 =
2

3
x4 −

2

3
+

1

3
x5, x1 = −1

3
x4 +

10

3
− 2

3
x5, x3 = −x4 + 8.

An easy way to get a basic feasible solution is to let x4 = 8 and x5 = 1. Then a feasible solution is

(x1, x2, x3, x4, x5) = (0, 5, 0, 8, 1) .

It follows z0 = −5 and the matrix (11.2),

(
A 0 b

−c 1 0

)
with the variables kept track of on the

bottom is 


1 2 1 0 0 0 10
1 2 0 −1 0 0 2
2 1 0 0 1 0 6
−1 1 0 0 0 1 0
x1 x2 x3 x4 x5 0 0



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and the first thing to do is to permute the columns so that the list of variables on the bottom will
have x1 and x3 at the end. 



2 0 0 1 1 0 10
2 −1 0 1 0 0 2
1 0 1 2 0 0 6
1 0 0 −1 0 1 0
x2 x4 x5 x1 x3 0 0




Next, as described above, take the row reduced echelon form of the top three lines of the above
matrix. This yields 


1 0 0 1

2
1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1


 .

Now do row operations to 


1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

1 0 0 −1 0 1 0




to finally obtain 


1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

0 0 0 − 3
2 − 1

2 1 −5




and this is a simplex tableau. The variables are x2, x4, x5, x1, x3, z.
It isn’t as hard as it may appear from the above. Lets not permute the variables and simply find

an acceptable simplex tableau as described above.

Example 11.2.3 Consider z = x1 − x2 subject to the constraints, x1 +2x2 ≤ 10, x1 +2x2 ≥ 2, and
2x1 + x2 ≤ 6, xi ≥ 0. Find a simplex tableau.

Adding in slack variables, an augmented matrix which is descriptive of the constraints is




1 2 1 0 0 10
1 2 0 −1 0 6
2 1 0 0 1 6




The obvious solution is not feasible because of that -1 in the fourth column. When you let x1, x2 = 0,
you end up having x4 = −6 which is negative. Consider the second column and select the 2 as a
pivot to zero out that which is above and below the 2.




0 0 1 1 0 4
1
2 1 0 − 1

2 0 3
3
2 0 0 1

2 1 3




This one is good. When you let x1 = x4 = 0, you find that x2 = 3, x3 = 4, x5 = 3. The obvious
solution is now feasible. You can now assemble the simplex tableau. The first step is to include a
column and row for z. This yields




0 0 1 1 0 0 4
1
2 1 0 − 1

2 0 0 3
3
2 0 0 1

2 1 0 3
−1 0 1 0 0 1 0



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Now you need to get zeros in the right places so the simple columns will be preserved as simple
columns in this larger matrix. This means you need to zero out the 1 in the third column on the
bottom. A simplex tableau is now




0 0 1 1 0 0 4
1
2 1 0 − 1

2 0 0 3
3
2 0 0 1

2 1 0 3
−1 0 0 −1 0 1 −4


 .

Note it is not the same one obtained earlier. There is no reason a simplex tableau should be unique.
In fact, it follows from the above general description that you have one for each basic feasible point
of the region determined by the constraints.

11.3 The Simplex Algorithm

11.3.1 Maximums

The simplex algorithm takes you from one basic feasible solution to another while maximizing or
minimizing the function you are trying to maximize or minimize. Algebraically, it takes you from one
simplex tableau to another in which the lower right corner either increases in the case of maximization
or decreases in the case of minimization.

I will continue writing the simplex tableau in such a way that the simple columns having only
one entry nonzero are on the left. As explained above, this amounts to permuting the variables. I
will do this because it is possible to describe what is going on without onerous notation. However,
in the examples, I won’t worry so much about it. Thus, from a basic feasible solution, a simplex
tableau of the following form has been obtained in which the columns for the basic variables, xB are
listed first and b ≥ 0. (

I F 0 b

0 c 1 z0

)
(11.10)

Let x0i = bi for i = 1, · · · ,m and x0i = 0 for i > m. Then
(
x0, z0

)
is a solution to the above system

and since b ≥ 0, it follows
(
x0, z0

)
is a basic feasible solution.

If ci < 0 for some i, and if Fji ≤ 0 so that a whole column of

(
F
c

)
is ≤ 0 with the bottom

entry < 0, then letting xi be the variable corresponding to that column, you could leave all the other
entries of xF equal to zero but change xi to be positive. Let the new vector be denoted by x′

F and
letting x′

B = b− Fx′
F it follows

(x′
B)k = bk −

∑

j

Fkj (xF )j

= bk − Fkixi ≥ 0

Now this shows (x′
B ,x

′
F ) is feasible whenever xi > 0 and so you could let xi become arbitrarily large

and positive and conclude there is no maximum for z because

z = (−ci)xi + z0 (11.11)

If this happens in a simplex tableau, you can say there is no maximum and stop.
What if c ≥ 0? Then z = z0−cxF and to satisfy the constraints, you need xF ≥ 0. Therefore, in

this case, z0 is the largest possible value of z and so the maximum has been found. You stop when
this occurs. Next I explain what to do if neither of the above stopping conditions hold.

The only case which remains is that some ci < 0 and some Fji > 0. You pick a column in

(
F
c

)

in which ci < 0, usually the one for which ci is the largest in absolute value. You pick Fji > 0 as
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a pivot element, divide the jth row by Fji and then use to obtain zeros above Fji and below Fji,
thus obtaining a new simple column. This row operation also makes exactly one of the other simple
columns into a nonsimple column. (In terms of variables, it is said that a free variable becomes
a basic variable and a basic variable becomes a free variable.) Now permuting the columns and
variables, yields (

I F ′ 0 b′

0 c′ 1 z0′

)

where z0′ ≥ z0 because z0′ = z0 − ci

(
bj
Fji

)
and ci < 0. If b′ ≥ 0, you are in the same position

you were at the beginning but now z0 is larger. Now here is the important thing. You don’t pick
just any Fji when you do these row operations. You pick the positive one for which the row

operation results in b′ ≥ 0. Otherwise the obvious basic feasible solution obtained by letting
x′
F = 0 will fail to satisfy the constraint that x ≥ 0.
How is this done? You need

b′k ≡ bk − Fkibj
Fji

≥ 0 (11.12)

for each k = 1, · · · ,m or equivalently,

bk ≥ Fkibj
Fji

. (11.13)

Now if Fki ≤ 0 the above holds. Therefore, you only need to check Fpi for Fpi > 0. The pivot,
Fji is the one which makes the quotients of the form

bp
Fpi

for all positive Fpi the smallest. This will work because for Fki > 0,

bp
Fpi

≤ bk
Fki

⇒ bk ≥ Fkibp
Fpi

Having gotten a new simplex tableau, you do the same thing to it which was just done and continue.
As long as b > 0, so you don’t encounter the degenerate case, the values for z associated with setting
xF = 0 keep getting strictly larger every time the process is repeated. You keep going until you find
c ≥ 0. Then you stop. You are at a maximum. Problems can occur in the process in the so called
degenerate case when at some stage of the process some bj = 0. In this case you can cycle through
different values for x with no improvement in z. This case will not be discussed here.

Example 11.3.1 Maximize 2x1+3x2 subject to the constraints x1+x2 ≥ 1, 2x1+x2 ≤ 6, x1+2x2 ≤
6, x1, x2 ≥ 0.

The constraints are of the form

x1 + x2 − x3 = 1

2x1 + x2 + x4 = 6

x1 + 2x2 + x5 = 6

where the x3, x4, x5 are the slack variables. An augmented matrix for these equations is of the form




1 1 −1 0 0 1
2 1 0 1 0 6
1 2 0 0 1 6



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Obviously the obvious solution is not feasible. It results in x3 < 0. We need to exchange basic
variables. Lets just try something.




1 1 −1 0 0 1
0 −1 2 1 0 4
0 1 1 0 1 5




Now this one is all right because the obvious solution is feasible. Letting x2 = x3 = 0, it follows
that the obvious solution is feasible. Now we add in the objective function as described above.




1 1 −1 0 0 0 1
0 −1 2 1 0 0 4
0 1 1 0 1 0 5
−2 −3 0 0 0 1 0




Then do row operations to leave the simple columns the same. Then



1 1 −1 0 0 0 1
0 −1 2 1 0 0 4
0 1 1 0 1 0 5
0 −1 −2 0 0 1 2




Now there are negative numbers on the bottom row to the left of the 1. Lets pick the first. (It would
be more sensible to pick the second.) The ratios to look at are 5/1, 1/1 so pick for the pivot the 1
in the second column and first row. This will leave the right column above the lower right corner
nonnegative. Thus the next tableau is




1 1 −1 0 0 0 1
1 0 1 1 0 0 5
−1 0 2 0 1 0 4
1 0 −3 0 0 1 3




There is still a negative number there to the left of the 1 in the bottom row. The new ratios are
4/2, 5/1 so the new pivot is the 2 in the third column. Thus the next tableau is




1
2 1 0 0 1

2 0 3
3
2 0 0 1 − 1

2 0 3
−1 0 2 0 1 0 4
− 1

2 0 0 0 3
2 1 9




Still, there is a negative number in the bottom row to the left of the 1 so the process does not stop
yet. The ratios are 3/ (3/2) and 3/ (1/2) and so the new pivot is that 3/2 in the first column. Thus
the new tableau is 



0 1 0 − 1
3

2
3 0 2

3
2 0 0 1 − 1

2 0 3
0 0 2 2

3
2
3 0 6

0 0 0 1
3

4
3 1 10




Now stop. The maximum value is 10. This is an easy enough problem to do geometrically and so you
can easily verify that this is the right answer. It occurs when x4 = x5 = 0, x1 = 2, x2 = 2, x3 = 3.

11.3.2 Minimums

How does it differ if you are finding a minimum? From a basic feasible solution, a simplex tableau
of the following form has been obtained in which the simple columns for the basic variables, xB are
listed first and b ≥ 0. (

I F 0 b

0 c 1 z0

)
(11.14)
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Let x0i = bi for i = 1, · · · ,m and x0i = 0 for i > m. Then
(
x0, z0

)
is a solution to the above system

and since b ≥ 0, it follows
(
x0, z0

)
is a basic feasible solution. So far, there is no change.

Suppose first that some ci > 0 and Fji ≤ 0 for each j. Then let x′
F consist of changing xi by

making it positive but leaving the other entries of xF equal to 0. Then from the bottom row,

z = −cixi + z0

and you let x′
B = b−Fx′

F ≥ 0. Thus the constraints continue to hold when xi is made increasingly
positive and it follows from the above equation that there is no minimum for z. You stop when this
happens.

Next suppose c ≤ 0. Then in this case, z = z0 − cxF and from the constraints, xF ≥ 0 and so
−cxF ≥ 0 and so z0 is the minimum value and you stop since this is what you are looking for.

What do you do in the case where some ci > 0 and some Fji > 0? In this case, you use the simplex
algorithm as in the case of maximums to obtain a new simplex tableau in which z0′ is smaller. You
choose Fji the same way to be the positive entry of the ith column such that bp/Fpi ≥ bj/Fji for all
positive entries, Fpi and do the same row operations. Now this time,

z0′ = z0 − ci

(
bj
Fji

)
< z0

As in the case of maximums no problem can occur and the process will converge unless you have the
degenerate case in which some bj = 0. As in the earlier case, this is most unfortunate when it occurs.
You see what happens of course. z0 does not change and the algorithm just delivers different values
of the variables forever with no improvement.

To summarize the geometrical significance of the simplex algorithm, it takes you from one corner
of the feasible region to another. You go in one direction to find the maximum and in another to
find the minimum. For the maximum you try to get rid of negative entries of c and for minimums
you try to eliminate positive entries of c, where the method of elimination involves the auspicious
use of an appropriate pivot element and row operations.

Now return to Example 11.2.2. It will be modified to be a maximization problem.

Example 11.3.2 Maximize z = x1 − x2 subject to the constraints,

x1 + 2x2 ≤ 10, x1 + 2x2 ≥ 2,

and 2x1 + x2 ≤ 6, xi ≥ 0.

Recall this is the same as maximizing z = x1 − x2 subject to




1 2 1 0 0
1 2 0 −1 0
2 1 0 0 1







x1
x2
x3
x4
x5




=




10
2
6


 ,x ≥ 0,

the variables, x3, x4, x5 being slack variables. Recall the simplex tableau was




1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

0 0 0 − 3
2 − 1

2 1 −5




with the variables ordered as x2, x4, x5, x1, x3 and so xB = (x2, x4, x5) and

xF = (x1, x3) .
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Apply the simplex algorithm to the fourth column because − 3
2 < 0 and this is the most negative

entry in the bottom row. The pivot is 3/2 because 1/(3/2) = 2/3 < 5/ (1/2) . Dividing this row by
3/2 and then using this to zero out the other elements in that column, the new simplex tableau is




1 0 − 1
3 0 2

3 0 14
3

0 1 0 0 1 0 8
0 0 2

3 1 − 1
3 0 2

3
0 0 1 0 −1 1 −4


 .

Now there is still a negative number in the bottom left row. Therefore, the process should be
continued. This time the pivot is the 2/3 in the top of the column. Dividing the top row by 2/3
and then using this to zero out the entries below it,




3
2 0 − 1

2 0 1 0 7
− 3

2 1 1
2 0 0 0 1

1
2 0 1

2 1 0 0 3
3
2 0 1

2 0 0 1 3


 .

Now all the numbers on the bottom left row are nonnegative so the process stops. Now recall the
variables and columns were ordered as x2, x4, x5, x1, x3. The solution in terms of x1 and x2 is x2 = 0
and x1 = 3 and z = 3. Note that in the above, I did not worry about permuting the columns to
keep those which go with the basic variables on the left.

Here is a bucolic example.

Example 11.3.3 Consider the following table.

F1 F2 F3 F4

iron 1 2 1 3
protein 5 3 2 1
folic acid 1 2 2 1
copper 2 1 1 1
calcium 1 1 1 1

This information is available to a pig farmer and Fi denotes a particular feed. The numbers in the
table contain the number of units of a particular nutrient contained in one pound of the given feed.
Thus F2 has 2 units of iron in one pound. Now suppose the cost of each feed in cents per pound is
given in the following table.

F1 F2 F3 F4

2 3 2 3

A typical pig needs 5 units of iron, 8 of protein, 6 of folic acid, 7 of copper and 4 of calcium. (The
units may change from nutrient to nutrient.) How many pounds of each feed per pig should the pig
farmer use in order to minimize his cost?

His problem is to minimize C ≡ 2x1 + 3x2 + 2x3 + 3x4 subject to the constraints

x1 + 2x2 + x3 + 3x4 ≥ 5,

5x1 + 3x2 + 2x3 + x4 ≥ 8,

x1 + 2x2 + 2x3 + x4 ≥ 6,

2x1 + x2 + x3 + x4 ≥ 7,

x1 + x2 + x3 + x4 ≥ 4.
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where each xi ≥ 0. Add in the slack variables,

x1 + 2x2 + x3 + 3x4 − x5 = 5

5x1 + 3x2 + 2x3 + x4 − x6 = 8

x1 + 2x2 + 2x3 + x4 − x7 = 6

2x1 + x2 + x3 + x4 − x8 = 7

x1 + x2 + x3 + x4 − x9 = 4

The augmented matrix for this system is



1 2 1 3 −1 0 0 0 0 5
5 3 2 1 0 −1 0 0 0 8
1 2 2 1 0 0 −1 0 0 6
2 1 1 1 0 0 0 −1 0 7
1 1 1 1 0 0 0 0 −1 4




How in the world can you find a basic feasible solution? Remember the simplex algorithm is designed
to keep the entries in the right column nonnegative so you use this algorithm a few times till the
obvious solution is a basic feasible solution.

Consider the first column. The pivot is the 5. Using the row operations described in the
algorithm, you get




0 7
5

3
5

14
5 −1 1

5 0 0 0 17
5

1 3
5

2
5

1
5 0 − 1

5 0 0 0 8
5

0 7
5

8
5

4
5 0 1

5 −1 0 0 22
5

0 − 1
5

1
5

3
5 0 2

5 0 −1 0 19
5

0 2
5

3
5

4
5 0 1

5 0 0 −1 12
5




Now go to the second column. The pivot in this column is the 7/5. This is in a different row than
the pivot in the first column so I will use it to zero out everything below it. This will get rid of the
zeros in the fifth column and introduce zeros in the second. This yields




0 1 3
7 2 − 5

7
1
7 0 0 0 17

7
1 0 1

7 −1 3
7 − 2

7 0 0 0 1
7

0 0 1 −2 1 0 −1 0 0 1
0 0 2

7 1 − 1
7

3
7 0 −1 0 30

7
0 0 3

7 0 2
7

1
7 0 0 −1 10

7




Now consider another column, this time the fourth. I will pick this one because it has some negative
numbers in it so there are fewer entries to check in looking for a pivot. Unfortunately, the pivot is
the top 2 and I don’t want to pivot on this because it would destroy the zeros in the second column.
Consider the fifth column. It is also not a good choice because the pivot is the second element from
the top and this would destroy the zeros in the first column. Consider the sixth column. I can use
either of the two bottom entries as the pivot. The matrix is




0 1 0 2 −1 0 0 0 1 1
1 0 1 −1 1 0 0 0 −2 3
0 0 1 −2 1 0 −1 0 0 1
0 0 −1 1 −1 0 0 −1 3 0
0 0 3 0 2 1 0 0 −7 10




Next consider the third column. The pivot is the 1 in the third row. This yields



0 1 0 2 −1 0 0 0 1 1
1 0 0 1 0 0 1 0 −2 2
0 0 1 −2 1 0 −1 0 0 1
0 0 0 −1 0 0 −1 −1 3 1
0 0 0 6 −1 1 3 0 −7 7



.
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There are still 5 columns which consist entirely of zeros except for one entry. Four of them have
that entry equal to 1 but one still has a -1 in it, the -1 being in the fourth column. I need to do the
row operations on a nonsimple column which has the pivot in the fourth row. Such a column is the
second to the last. The pivot is the 3. The new matrix is




0 1 0 7
3 −1 0 1

3
1
3 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 8
3

0 0 1 −2 1 0 −1 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 28

3



. (11.15)

Now the obvious basic solution is feasible. You let x4 = 0 = x5 = x7 = x8 and x1 = 8/3, x2 =
2/3, x3 = 1, and x6 = 28/3. You don’t need to worry too much about this. It is the above matrix
which is desired. Now you can assemble the simplex tableau and begin the algorithm. Remember
C ≡ 2x1 + 3x2 + 2x3 + 3x4. First add the row and column which deal with C. This yields




0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
−2 −3 −2 −3 0 0 0 0 0 1 0




(11.16)

Now you do row operations to keep the simple columns of (11.15) simple in (11.16). Of course you
could permute the columns if you wanted but this is not necessary.

This yields the following for a simplex tableau. Now it is a matter of getting rid of the positive
entries in the bottom row because you are trying to minimize.




0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
0 0 0 2

3 −1 0 − 1
3 − 1

3 0 1 28
3




The most positive of them is the 2/3 and so I will apply the algorithm to this one first. The pivot
is the 7/3. After doing the row operation the next tableau is




0 3
7 0 1 − 3

7 0 1
7

1
7 0 0 2

7
1 − 1

7 0 0 1
7 0 2

7 − 5
7 0 0 18

7
0 6

7 1 0 1
7 0 − 5

7
2
7 0 0 11

7
0 1

7 0 0 − 1
7 0 − 2

7 − 2
7 1 0 3

7
0 − 11

7 0 0 4
7 1 1

7 − 20
7 0 0 58

7
0 − 2

7 0 0 − 5
7 0 − 3

7 − 3
7 0 1 64

7




and you see that all the entries are negative and so the minimum is 64/7 and it occurs when
x1 = 18/7, x2 = 0, x3 = 11/7, x4 = 2/7.

There is no maximum for the above problem. However, I will pretend I don’t know this and
attempt to use the simplex algorithm. You set up the simiplex tableau the same way. Recall it is




0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
0 0 0 2

3 −1 0 − 1
3 − 1

3 0 1 28
3



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Now to maximize, you try to get rid of the negative entries in the bottom left row. The most
negative entry is the -1 in the fifth column. The pivot is the 1 in the third row of this column. The
new tableau is 



0 1 1 1
3 0 0 − 2

3
1
3 0 0 5

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 1 5
3 0 1 − 1

3 − 7
3 0 0 31

3
0 0 1 − 4

3 0 0 − 4
3 − 1

3 0 1 31
3



.

Consider the fourth column. The pivot is the top 1/3. The new tableau is




0 3 3 1 0 0 −2 1 0 0 5
1 −1 −1 0 0 0 1 −1 0 0 1
0 6 7 0 1 0 −5 2 0 0 11
0 1 1 0 0 0 −1 0 1 0 2
0 −5 −4 0 0 1 3 −4 0 0 2
0 4 5 0 0 0 −4 1 0 1 17




There is still a negative in the bottom, the -4. The pivot in that column is the 3. The algorithm
yields 



0 − 1
3

1
3 1 0 2

3 0 − 5
3 0 0 19

3
1 2

3
1
3 0 0 − 1

3 0 1
3 0 0 1

3
0 − 7

3
1
3 0 1 5

3 0 − 14
3 0 0 43

3
0 − 2

3 − 1
3 0 0 1

3 0 − 4
3 1 0 8

3
0 − 5

3 − 4
3 0 0 1

3 1 − 4
3 0 0 2

3
0 − 8

3 − 1
3 0 0 4

3 0 − 13
3 0 1 59

3




Note how z keeps getting larger. Consider the column having the −13/3 in it. The pivot is the
single positive entry, 1/3. The next tableau is




5 3 2 1 0 −1 0 0 0 0 8
3 2 1 0 0 −1 0 1 0 0 1
14 7 5 0 1 −3 0 0 0 0 19
4 2 1 0 0 −1 0 0 1 0 4
4 1 0 0 0 −1 1 0 0 0 2
13 6 4 0 0 −3 0 0 0 1 24



.

There is a column consisting of all negative entries. There is therefore, no maximum. Note also how
there is no way to pick the pivot in that column.

Example 11.3.4 Minimize z = x1 − 3x2 + x3 subject to the constraints x1 + x2 + x3 ≤ 10, x1 +
x2 + x3 ≥ 2, x1 + x2 + 3x3 ≤ 8 and x1 + 2x2 + x3 ≤ 7 with all variables nonnegative.

There exists an answer because the region defined by the constraints is closed and bounded.
Adding in slack variables you get the following augmented matrix corresponding to the constraints.




1 1 1 1 0 0 0 10
1 1 1 0 −1 0 0 2
1 1 3 0 0 1 0 8
1 2 1 0 0 0 1 7




Of course there is a problem with the obvious solution obtained by setting to zero all variables
corresponding to a nonsimple column because of the simple column which has the−1 in it. Therefore,

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



208 LINEAR PROGRAMMING

I will use the simplex algorithm to make this column non simple. The third column has the 1 in the
second row as the pivot so I will use this column. This yields




0 0 0 1 1 0 0 8
1 1 1 0 −1 0 0 2
−2 −2 0 0 3 1 0 2
0 1 0 0 1 0 1 5


 (11.17)

and the obvious solution is feasible. Now it is time to assemble the simplex tableau. First add in
the bottom row and second to last column corresponding to the equation for z. This yields




0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
−1 3 −1 0 0 0 0 1 0




Next you need to zero out the entries in the bottom row which are below one of the simple columns
in (11.17). This yields the simplex tableau




0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
0 4 0 0 −1 0 0 1 2



.

The desire is to minimize this so you need to get rid of the positive entries in the left bottom row.
There is only one such entry, the 4. In that column the pivot is the 1 in the second row of this
column. Thus the next tableau is




0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
0 0 2 0 1 1 0 0 6
−1 0 −1 0 2 0 1 0 3
−4 0 −4 0 3 0 0 1 −6




There is still a positive number there, the 3. The pivot in this column is the 2. Apply the algorithm
again. This yields 



1
2 0 1

2 1 0 0 − 1
2 0 13

2
1
2 1 1

2 0 0 0 1
2 0 7

2
1
2 0 5

2 0 0 1 − 1
2 0 9

2
− 1

2 0 − 1
2 0 1 0 1

2 0 3
2

− 5
2 0 − 5

2 0 0 0 − 3
2 1 − 21

2



.

Now all the entries in the left bottom row are nonpositive so the process has stopped. The minimum
is −21/2. It occurs when x1 = 0, x2 = 7/2, x3 = 0.

Now consider the same problem but change the word, minimize to the word, maximize.

Example 11.3.5 Maximize z = x1 − 3x2 + x3 subject to the constraints x1 + x2 + x3 ≤ 10, x1 +
x2 + x3 ≥ 2, x1 + x2 + 3x3 ≤ 8 and x1 + 2x2 + x3 ≤ 7 with all variables nonnegative.

The first part of it is the same. You wind up with the same simplex tableau,



0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
0 4 0 0 −1 0 0 1 2



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but this time, you apply the algorithm to get rid of the negative entries in the left bottom row.
There is a −1. Use this column. The pivot is the 3. The next tableau is




2
3

2
3 0 1 0 − 1

3 0 0 22
3

1
3

1
3 1 0 0 1

3 0 0 8
3

− 2
3 − 2

3 0 0 1 1
3 0 0 2

3
2
3

5
3 0 0 0 − 1

3 1 0 13
3

− 2
3

10
3 0 0 0 1

3 0 1 8
3




There is still a negative entry, the −2/3. This will be the new pivot column. The pivot is the 2/3
on the fourth row. This yields




0 −1 0 1 0 0 −1 0 3
0 − 1

2 1 0 0 1
2 − 1

2 0 1
2

0 1 0 0 1 0 1 0 5
1 5

2 0 0 0 − 1
2

3
2 0 13

2
0 5 0 0 0 0 1 1 7




and the process stops. The maximum for z is 7 and it occurs when x1 = 13/2, x2 = 0, x3 = 1/2.

11.4 Finding A Basic Feasible Solution

By now it should be fairly clear that finding a basic feasible solution can create considerable diffi-
culty. Indeed, given a system of linear inequalities along with the requirement that each variable
be nonnegative, do there even exist points satisfying all these inequalities? If you have many vari-
ables, you can’t answer this by drawing a picture. Is there some other way to do this which is more
systematic than what was presented above? The answer is yes. It is called the method of artificial
variables. I will illustrate this method with an example.

Example 11.4.1 Find a basic feasible solution to the system 2x1 + x2 − x3 ≥ 3, x1 + x2 + x3 ≥
2, x1 + x2 + x3 ≤ 7 and x ≥ 0.

If you write the appropriate augmented matrix with the slack variables,




2 1 −1 −1 0 0 3
1 1 1 0 −1 0 2
1 1 1 0 0 1 7


 (11.18)

The obvious solution is not feasible. This is why it would be hard to get started with the simplex
method. What is the problem? It is those −1 entries in the fourth and fifth columns. To get around
this, you add in artificial variables to get an augmented matrix of the form




2 1 −1 −1 0 0 1 0 3
1 1 1 0 −1 0 0 1 2
1 1 1 0 0 1 0 0 7


 (11.19)

Thus the variables are x1, x2, x3, x4, x5, x6, x7, x8. Suppose you can find a feasible solution to the
system of equations represented by the above augmented matrix. Thus all variables are nonnegative.
Suppose also that it can be done in such a way that x8 and x7 happen to be 0. Then it will follow that
x1, · · · , x6 is a feasible solution for (11.18). Conversely, if you can find a feasible solution for (11.18),
then letting x7 and x8 both equal zero, you have obtained a feasible solution to (11.19). Since all
variables are nonnegative, x7 and x8 both equalling zero is equivalent to saying the minimum of
z = x7+x8 subject to the constraints represented by the above augmented matrix equals zero. This
has proved the following simple observation.
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Observation 11.4.2 There exists a feasible solution to the constraints represented by the augmented
matrix of (11.18) and x ≥ 0 if and only if the minimum of x7+x8 subject to the constraints of (11.19)
and x ≥ 0 exists and equals 0.

Of course a similar observation would hold in other similar situations. Now the point of all this
is that it is trivial to see a feasible solution to (11.19), namely x6 = 7, x7 = 3, x8 = 2 and all the
other variables may be set to equal zero. Therefore, it is easy to find an initial simplex tableau for
the minimization problem just described. First add the column and row for z




2 1 −1 −1 0 0 1 0 0 3
1 1 1 0 −1 0 0 1 0 2
1 1 1 0 0 1 0 0 0 7
0 0 0 0 0 0 −1 −1 1 0




Next it is necessary to make the last two columns on the bottom left row into simple columns.
Performing the row operation, this yields an initial simplex tableau,




2 1 −1 −1 0 0 1 0 0 3
1 1 1 0 −1 0 0 1 0 2
1 1 1 0 0 1 0 0 0 7
3 2 0 −1 −1 0 0 0 1 5




Now the algorithm involves getting rid of the positive entries on the left bottom row. Begin with
the first column. The pivot is the 2. An application of the simplex algorithm yields the new tableau




1 1
2 − 1

2 − 1
2 0 0 1

2 0 0 3
2

0 1
2

3
2

1
2 −1 0 − 1

2 1 0 1
2

0 1
2

3
2

1
2 0 1 − 1

2 0 0 11
2

0 1
2

3
2

1
2 −1 0 − 3

2 0 1 1
2




Now go to the third column. The pivot is the 3/2 in the second row. An application of the simplex
algorithm yields 



1 2
3 0 − 1

3 − 1
3 0 1

3
1
3 0 5

3
0 1

3 1 1
3 − 2

3 0 − 1
3

2
3 0 1

3
0 0 0 0 1 1 0 −1 0 5
0 0 0 0 0 0 −1 −1 1 0


 (11.20)

and you see there are only nonpositive numbers on the bottom left column so the process stops and
yields 0 for the minimum of z = x7+x8. As for the other variables, x1 = 5/3, x2 = 0, x3 = 1/3, x4 =
0, x5 = 0, x6 = 5. Now as explained in the above observation, this is a basic feasible solution for the
original system (11.18).

Now consider a maximization problem associated with the above constraints.

Example 11.4.3 Maximize x1−x2+2x3 subject to the constraints, 2x1+x2−x3 ≥ 3, x1+x2+x3 ≥
2, x1 + x2 + x3 ≤ 7 and x ≥ 0.

From (11.20) you can immediately assemble an initial simplex tableau. You begin with the first
6 columns and top 3 rows in (11.20). Then add in the column and row for z. This yields




1 2
3 0 − 1

3 − 1
3 0 0 5

3
0 1

3 1 1
3 − 2

3 0 0 1
3

0 0 0 0 1 1 0 5
−1 1 −2 0 0 0 1 0



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and you first do row operations to make the first and third columns simple columns. Thus the next
simplex tableau is 



1 2
3 0 − 1

3 − 1
3 0 0 5

3
0 1

3 1 1
3 − 2

3 0 0 1
3

0 0 0 0 1 1 0 5
0 7

3 0 1
3 − 5

3 0 1 7
3




You are trying to get rid of negative entries in the bottom left row. There is only one, the −5/3.
The pivot is the 1. The next simplex tableau is then




1 2
3 0 − 1

3 0 1
3 0 10

3
0 1

3 1 1
3 0 2

3 0 11
3

0 0 0 0 1 1 0 5
0 7

3 0 1
3 0 5

3 1 32
3




and so the maximum value of z is 32/3 and it occurs when x1 = 10/3, x2 = 0 and x3 = 11/3.

11.5 Duality

You can solve minimization problems by solving maximization problems. You can also go the other
direction and solve maximization problems by minimization problems. Sometimes this makes things
much easier. To be more specific, the two problems to be considered are

A.) Minimize z = cx subject to x ≥ 0 and Ax ≥ b and
B.) Maximize w = yb such that y ≥ 0 and yA ≤ c,

(
equivalently ATyT ≥ cT and w = bTyT

)
.

In these problems it is assumed A is an m× p matrix.
I will show how a solution of the first yields a solution of the second and then show how a solution

of the second yields a solution of the first. The problems, A.) and B.) are called dual problems.

Lemma 11.5.1 Let x be a solution of the inequalities of A.) and let y be a solution of the inequalities
of B.). Then

cx ≥ yb.

and if equality holds in the above, then x is the solution to A.) and y is a solution to B.).

Proof: This follows immediately. Since c ≥ yA,

cx ≥ yAx ≥ yb.

It follows from this lemma that if y satisfies the inequalities of B.) and x satisfies the inequalities
of A.) then if equality holds in the above lemma, it must be that x is a solution of A.) and y is a
solution of B.). �

Now recall that to solve either of these problems using the simplex method, you first add in slack
variables. Denote by x′ and y′ the enlarged list of variables. Thus x′ has at least m entries and so
does y′ and the inequalities involving A were replaced by equalities whose augmented matrices were
of the form (

A −I b
)
, and

(
AT I cT

)

Then you included the row and column for z and w to obtain

(
A −I 0 b

−c 0 1 0

)
and

(
AT I 0 cT

−bT 0 1 0

)
. (11.21)
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Then the problems have basic feasible solutions if it is possible to permute the first p+m columns
in the above two matrices and obtain matrices of the form

(
B F 0 b

−cB −cF 1 0

)
and

(
B1 F1 0 cT

−bT
B1

−bT
F1

1 0

)
(11.22)

where B,B1 are invertible m × m and p × p matrices and denoting the variables associated with
these columns by xB ,yB and those variables associated with F or F1 by xF and yF , it follows that
letting BxB = b and xF = 0, the resulting vector x′ is a solution to x′ ≥ 0 and

(
A −I

)
x′ = b

with similar constraints holding for y′. In other words, it is possible to obtain simplex tableaus,
(
I B−1F 0 B−1b

0 cBB
−1F − cF 1 cBB

−1b

)
,

(
I B−1

1 F1 0 B−1
1 cT

0 bT
B1
B−1

1 F − bT
F1

1 bT
B1
B−1

1 cT

)
(11.23)

Similar considerations apply to the second problem. Thus as just described, a basic feasible solution
is one which determines a simplex tableau like the above in which you get a feasible solution by
setting all but the first m variables equal to zero. The simplex algorithm takes you from one basic
feasible solution to another till eventually, if there is no degeneracy, you obtain a basic feasible
solution which yields the solution of the problem of interest.

Theorem 11.5.2 Suppose there exists a solution, x to A.) where x is a basic feasible solution of
the inequalities of A.). Then there exists a solution, y to B.) and cx = by. It is also possible to
find y from x using a simple formula.

Proof: Since the solution to A.) is basic and feasible, there exists a simplex tableau like (11.23)
such that x′ can be split into xB and xF such that xF = 0 and xB = B−1b. Now since it is
a minimizer, it follows cBB

−1F − cF ≤ 0 and the minimum value for cx is cBB
−1b. Stating

this again, cx = cBB
−1b. Is it possible you can take y = cBB

−1? From Lemma 11.5.1 this will be
so if cBB

−1 solves the constraints of problem B.). Is cBB
−1 ≥ 0? Is cBB

−1A ≤ c? These two
conditions are satisfied if and only if cBB

−1
(
A −I

)
≤
(
c 0

)
. Referring to the process of

permuting the columns of the first augmented matrix of (11.21) to get (11.22) and doing the same
permutations on the columns of

(
A −I

)
and

(
c 0

)
, the desired inequality holds if and only

if cBB
−1
(
B F

)
≤
(
cB cF

)
which is equivalent to saying

(
cB cBB

−1F
)
≤
(
cB cF

)

and this is true because cBB
−1F −cF ≤ 0 due to the assumption that x is a minimizer. The simple

formula is just
y = cBB

−1. �

The proof of the following corollary is similar.

Corollary 11.5.3 Suppose there exists a solution, y to B.) where y is a basic feasible solution of
the inequalities of B.). Then there exists a solution, x to A.) and cx = by. It is also possible to
find x from y using a simple formula. In this case, and referring to (11.23), the simple formula is
x = B−T

1 bB1
.

As an example, consider the pig farmers problem. The main difficulty in this problem was finding
an initial simplex tableau. Now consider the following example and marvel at how all the difficulties
disappear.

Example 11.5.4 minimize C ≡ 2x1 + 3x2 + 2x3 + 3x4 subject to the constraints

x1 + 2x2 + x3 + 3x4 ≥ 5,

5x1 + 3x2 + 2x3 + x4 ≥ 8,

x1 + 2x2 + 2x3 + x4 ≥ 6,

2x1 + x2 + x3 + x4 ≥ 7,

x1 + x2 + x3 + x4 ≥ 4.

where each xi ≥ 0.
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Here the dual problem is to maximize w = 5y1 +8y2 +6y3 +7y4 +4y5 subject to the constraints




1 5 1 2 1
2 3 2 1 1
1 2 2 1 1
3 1 1 1 1







y1
y2
y3
y4
y5




≤




2
3
2
3


 .

Adding in slack variables, these inequalities are equivalent to the system of equations whose
augmented matrix is 



1 5 1 2 1 1 0 0 0 2
2 3 2 1 1 0 1 0 0 3
1 2 2 1 1 0 0 1 0 2
3 1 1 1 1 0 0 0 1 3




Now the obvious solution is feasible so there is no hunting for an initial obvious feasible solution
required. Now add in the row and column for w. This yields




1 5 1 2 1 1 0 0 0 0 2
2 3 2 1 1 0 1 0 0 0 3
1 2 2 1 1 0 0 1 0 0 2
3 1 1 1 1 0 0 0 1 0 3
−5 −8 −6 −7 −4 0 0 0 0 1 0



.

It is a maximization problem so you want to eliminate the negatives in the bottom left row. Pick
the column having the one which is most negative, the −8. The pivot is the top 5. Then apply the
simplex algorithm to obtain




1
5 1 1

5
2
5

1
5

1
5 0 0 0 0 2

5
7
5 0 7

5 − 1
5

2
5 − 3

5 1 0 0 0 9
5

3
5 0 8

5
1
5

3
5 − 2

5 0 1 0 0 6
5

14
5 0 4

5
3
5

4
5 − 1

5 0 0 1 0 13
5

− 17
5 0 − 22

5 − 19
5 − 12

5
8
5 0 0 0 1 16

5



.

There are still negative entries in the bottom left row. Do the simplex algorithm to the column
which has the − 22

5 . The pivot is the 8
5 . This yields




1
8 1 0 3

8
1
8

1
4 0 − 1

8 0 0 1
4

7
8 0 0 − 3

8 − 1
8 − 1

4 1 − 7
8 0 0 3

4
3
8 0 1 1

8
3
8 − 1

4 0 5
8 0 0 3

4
5
2 0 0 1

2
1
2 0 0 − 1

2 1 0 2
− 7

4 0 0 − 13
4 − 3

4
1
2 0 11

4 0 1 13
2




and there are still negative numbers. Pick the column which has the −13/4. The pivot is the 3/8 in
the top. This yields




1
3

8
3 0 1 1

3
2
3 0 − 1

3 0 0 2
3

1 1 0 0 0 0 1 −1 0 0 1
1
3 − 1

3 1 0 1
3 − 1

3 0 2
3 0 0 2

3
7
3 − 4

3 0 0 1
3 − 1

3 0 − 1
3 1 0 5

3
− 2

3
26
3 0 0 1

3
8
3 0 5

3 0 1 26
3




which has only one negative entry on the bottom left. The pivot for this first column is the 7
3 . The

next tableau is 


0 20
7 0 1 2

7
5
7 0 − 2

7 − 1
7 0 3

7
0 11

7 0 0 − 1
7

1
7 1 − 6

7 − 3
7 0 2

7
0 − 1

7 1 0 2
7 − 2

7 0 5
7 − 1

7 0 3
7

1 − 4
7 0 0 1

7 − 1
7 0 − 1

7
3
7 0 5

7
0 58

7 0 0 3
7

18
7 0 11

7
2
7 1 64

7



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and all the entries in the left bottom row are nonnegative so the answer is 64/7. This is the same
as obtained before. So what values for x are needed? Here the basic variables are y1, y3, y4, y7.
Consider the original augmented matrix, one step before the simplex tableau.




1 5 1 2 1 1 0 0 0 0 2
2 3 2 1 1 0 1 0 0 0 3
1 2 2 1 1 0 0 1 0 0 2
3 1 1 1 1 0 0 0 1 0 3
−5 −8 −6 −7 −4 0 0 0 0 1 0



.

Permute the columns to put the columns associated with these basic variables first. Thus




1 1 2 0 5 1 1 0 0 0 2
2 2 1 1 3 1 0 0 0 0 3
1 2 1 0 2 1 0 1 0 0 2
3 1 1 0 1 1 0 0 1 0 3
−5 −6 −7 0 −8 −4 0 0 0 1 0




The matrix B is 


1 1 2 0
2 2 1 1
1 2 1 0
3 1 1 0




and so B−T equals 


− 1
7 − 2

7
5
7

1
7

0 0 0 1
− 1

7
5
7 − 2

7 − 6
7

3
7 − 1

7 − 1
7 − 3

7




Also bT
B =

(
5 6 7 0

)
and so from Corollary 11.5.3,

x =




− 1
7 − 2

7
5
7

1
7

0 0 0 1
− 1

7
5
7 − 2

7 − 6
7

3
7 − 1

7 − 1
7 − 3

7







5
6
7
0


 =




18
7
0
11
7
2
7




which agrees with the original way of doing the problem.
Two good books which give more discussion of linear programming are Strang [15] and Nobel

and Daniels [12]. Also listed in these books are other references which may prove useful if you are
interested in seeing more on these topics. There is a great deal more which can be said about linear
programming.

11.6 Exercises

1. Maximize and minimize z = x1 − 2x2 + x3 subject to the constraints x1 + x2 + x3 ≤ 10, x1 +
x2 + x3 ≥ 2, and x1 + 2x2 + x3 ≤ 7 if possible. All variables are nonnegative.

2. Maximize and minimize the following if possible. All variables are nonnegative.

(a) z = x1 − 2x2 subject to the constraints x1 + x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(b) z = x1 − 2x2 − 3x3 subject to the constraints x1 + x2 + x3 ≤ 8, x1 + x2 + 3x3 ≥ 1, and
x1 + x2 + x3 ≤ 7
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(c) z = 2x1 + x2 subject to the constraints x1 − x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(d) z = x1 + 2x2 subject to the constraints x1 − x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

3. Consider contradictory constraints, x1 + x2 ≥ 12 and x1 + 2x2 ≤ 5, x1 ≥ 0, x2 ≥ 0. You know
these two contradict but show they contradict using the simplex algorithm.

4. Find a solution to the following inequalities for x, y ≥ 0 if it is possible to do so. If it is not
possible, prove it is not possible.

(a)
6x+ 3y ≥ 4
8x+ 4y ≤ 5

(b)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 8
6x1 + 6x2 + 5x3 ≤ 11

(c)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 9
6x1 + 6x2 + 5x3 ≤ 9

(d)
x1 − x2 + x3 ≤ 2
x1 + 2x2 ≥ 4
3x1 + 2x3 ≤ 7

(e)
5x1 − 2x2 + 4x3 ≤ 1
6x1 − 3x2 + 5x3 ≥ 2
5x1 − 2x2 + 4x3 ≤ 5

5. Minimize z = x1 + x2 subject to x1 + x2 ≥ 2, x1 + 3x2 ≤ 20, x1 + x2 ≤ 18. Change to a
maximization problem and solve as follows: Let yi =M − xi. Formulate in terms of y1, y2.
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Spectral Theory

12.1 Eigenvalues And Eigenvectors Of A Matrix

Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of fundamental
importance in many areas. Row operations will no longer be such a useful tool in this subject.

12.1.1 Definition Of Eigenvectors And Eigenvalues

In this section, F = C.
To illustrate the idea behind what will be discussed, consider the following example.

Example 12.1.1 Here is a matrix.



0 5 −10
0 22 16
0 −9 −2


 .

Multiply this matrix by the vector 


−5
−4
3




and see what happens. Then multiply it by



1
0
0




and see what happens. Does this matrix act this way for some other vector?

First 


0 5 −10
0 22 16
0 −9 −2






−5
−4
3


 =




−50
−40
30


 = 10




−5
−4
3


 .

Next 


0 5 −10
0 22 16
0 −9 −2






1
0
0


 =




0
0
0


 = 0




1
0
0


 .

When you multiply the first vector by the given matrix, it stretched the vector, multiplying it by
10. When you multiplied the matrix by the second vector it sent it to the zero vector. Now consider




0 5 −10
0 22 16
0 −9 −2






1
1
1


 =




−5
38
−11


 .

217
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In this case, multiplication by the matrix did not result in merely multiplying the vector by a number.
In the above example, the first two vectors were called eigenvectors and the numbers, 10 and 0

are called eigenvalues. Not every number is an eigenvalue and not every vector is an eigenvector.
When you have a nonzero vector which, when multiplied by a matrix results in another vector
which is parallel to the first or equal to 0, this vector is called an eigenvector of the matrix. This is
the meaning when the vectors are in Rn. Things are less apparent geometrically when the vectors
are in Cn. The precise definition in all cases follows.

Definition 12.1.2 Let M be an n× n matrix and let x ∈ Cn be a nonzero vector for which

Mx = λx (12.1)

for some scalar λ. Then x is called an eigenvector and λ is called an eigenvalue (characteristic
value) of the matrix M.

Note: Eigenvectors are never equal to zero!

The set of all eigenvalues of an n × n matrix M, is denoted by σ (M) and is referred to as the
spectrum of M.

The eigenvectors of a matrix M are those vectors, x for which multiplication by M results in a
vector in the same direction or opposite direction to x. Since the zero vector 0 has no direction this
would make no sense for the zero vector. As noted above, 0 is never allowed to be an eigenvector.
How can eigenvectors be identified? Suppose x satisfies (12.1). Then

(M − λI)x = 0

for some x ̸= 0. (Equivalently, you could write (λI −M)x = 0.) Sometimes we will use

(λI −M)x = 0

and sometimes (M − λI)x = 0. It makes absolutely no difference and you should use whichever you
like better. Therefore, the matrix M − λI cannot have an inverse because if it did, the equation
could be solved,

x =
(
(M − λI)

−1
(M − λI)

)
x =(M − λI)

−1
((M − λI)x) = (M − λI)

−1
0 = 0,

and this would require x = 0, contrary to the requirement that x ̸= 0. By Theorem 6.2.1 on Page
106,

det (M − λI) = 0. (12.2)

(Equivalently you could write det (λI −M) = 0.) The expression, det (λI −M) or equivalently,
det (M − λI) is a polynomial called the characteristic polynomial and the above equation is
called the characteristic equation. For M an n×n matrix, it follows from the theorem on expanding
a matrix by its cofactor that det (M − λI) is a polynomial of degree n. As such, the equation (12.2)
has a solution, λ ∈ C by the fundamental theorem of algebra. Is it actually an eigenvalue? The
answer is yes, and this follows from Observation 9.2.7 on Page 171 along with Theorem 6.2.1 on
Page 106. Since det (M − λI) = 0 the matrix det (M − λI) cannot be one to one and so there exists
a nonzero vector x such that (M − λI)x = 0. This proves the following corollary.

Corollary 12.1.3 Let M be an n × n matrix and det (M − λI) = 0. Then there exists a nonzero
vector x ∈ Cn such that (M − λI)x = 0.
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12.1.2 Finding Eigenvectors And Eigenvalues

As an example, consider the following.

Example 12.1.4 Find the eigenvalues and eigenvectors for the matrix

A =




5 −10 −5
2 14 2
−4 −8 6


 .

You first need to identify the eigenvalues. Recall this requires the solution of the equation

det (A− λI) = 0.

In this case this equation is

det






5 −10 −5
2 14 2
−4 −8 6


− λ




1 0 0
0 1 0
0 0 1




 = 0

When you expand this determinant and simplify, you find the equation you need to solve is

(λ− 5)
(
λ2 − 20λ+ 100

)
= 0

and so the eigenvalues are
5, 10, 10.

We have listed 10 twice because it is a zero of multiplicity two due to

λ2 − 20λ+ 100 = (λ− 10)
2
.

Having found the eigenvalues, it only remains to find the eigenvectors. First find the eigenvectors
for λ = 5. As explained above, this requires you to solve the equation,






5 −10 −5
2 14 2
−4 −8 6


− 5




1 0 0
0 1 0
0 0 1








x
y
z


 =




0
0
0


 .

That is you need to find the solution to




0 −10 −5
2 9 2
−4 −8 1






x
y
z


 =




0
0
0




By now this is an old problem. You set up the augmented matrix and row reduce to get the solution.
Thus the matrix you must row reduce is




0 −10 −5 | 0
2 9 2 | 0
−4 −8 1 | 0


 . (12.3)

The row reduced echelon form is 


1 0 − 5
4 | 0

0 1 1
2 | 0

0 0 0 | 0



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and so the solution is any vector of the form



5
4 t
−1
2 t

t


 = t




5
4
−1
2

1




where t ∈ F. You would obtain the same collection of vectors if you replaced t with 4t. Thus a
simpler description for the solutions to this system of equations whose augmented matrix is in (12.3)
is

t




5
−2
4


 (12.4)

where t ∈ F. Now you need to remember that you can’t take t = 0 because this would result in the
zero vector and

Eigenvectors are never equal to zero!

Other than this value, every other choice of z in (12.4) results in an eigenvector. It is a good idea
to check your work! To do so, we will take the original matrix and multiply by this vector and see
if we get 5 times this vector.




5 −10 −5
2 14 2
−4 −8 6






5
−2
4


 =




25
−10
20


 = 5




5
−2
4




so it appears this is correct. Always check your work on these problems if you care about getting
the answer right.

The parameter, t is sometimes called a free variable. The set of vectors in (12.4) is called the
eigenspace and it equals ker (A− λI) . You should observe that in this case the eigenspace has
dimension 1 because the eigenspace is the span of a single vector. In general, you obtain the solution
from the row echelon form and the number of different free variables gives you the dimension of the
eigenspace. Just remember that not every vector in the eigenspace is an eigenvector. The vector 0
is not an eigenvector although it is in the eigenspace because

Eigenvectors are never equal to zero!

Next consider the eigenvectors for λ = 10. These vectors are solutions to the equation,





5 −10 −5
2 14 2
−4 −8 6


− 10




1 0 0
0 1 0
0 0 1








x
y
z


 =




0
0
0




That is you must find the solutions to



−5 −10 −5
2 4 2
−4 −8 −4






x
y
z


 =




0
0
0




which reduces to consideration of the augmented matrix



−5 −10 −5 | 0
2 4 2 | 0
−4 −8 −4 | 0




The row reduced echelon form for this matrix is



1 2 1 0
0 0 0 0
0 0 0 0



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and so the eigenvectors are of the form




−2s− t
s
t


 = s




−2
1
0


+ t




−1
0
1


 .

You can’t pick t and s both equal to zero because this would result in the zero vector and

Eigenvectors are never equal to zero!

However, every other choice of t and s does result in an eigenvector for the eigenvalue λ = 10. As in
the case for λ = 5 you should check your work if you care about getting it right.




5 −10 −5
2 14 2
−4 −8 6






−1
0
1


 =




−10
0
10


 = 10




−1
0
1




so it worked. The other vector will also work. Check it.

12.1.3 A Warning

The above example shows how to find eigenvectors and eigenvalues algebraically. You may have
noticed it is a bit long. Sometimes students try to first row reduce the matrix before looking

for eigenvalues. This is a terrible idea because row operations destroy the eigenvalues. The

eigenvalue problem is really not about row operations.
The general eigenvalue problem is the hardest problem in algebra and people still do research

on ways to find eigenvalues and their eigenvectors. If you are doing anything which would yield a
way to find eigenvalues and eigenvectors for general matrices without too much trouble, the thing
you are doing will certainly be wrong. The problems you will see in this book are not too hard
because they are cooked up to be easy. General methods to compute eigenvalues and eigenvectors
numerically are presented later. These methods work even when the problem is not cooked up to
be easy.

If you are so fortunate as to find the eigenvalues as in the above example, then finding the
eigenvectors does reduce to row operations and this part of the problem is easy. However, finding
the eigenvalues along with the eigenvectors is anything but easy because for an n × n matrix, it
involves solving a polynomial equation of degree n. If you only find a good approximation to the
eigenvalue, it won’t work. It either is or is not an eigenvalue and if it is not, the only solution to the
equation, (M − λI)x = 0 will be the zero solution as explained above and

Eigenvectors are never equal to zero!

Here is another example.

Example 12.1.5 Let

A =




2 2 −2
1 3 −1
−1 1 1




First find the eigenvalues.

det






2 2 −2
1 3 −1
−1 1 1


− λ




1 0 0
0 1 0
0 0 1




 = 0
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This reduces to λ3 − 6λ2 + 8λ = 0 and the solutions are 0, 2, and 4.

0 Can be an Eigenvalue!

Now find the eigenvectors. For λ = 0 the augmented matrix for finding the solutions is



2 2 −2 | 0
1 3 −1 | 0
−1 1 1 | 0




and the row reduced echelon form is



1 0 −1 0
0 1 0 0
0 0 0 0




Therefore, the eigenvectors are of the form

t




1
0
1




where t ̸= 0.
Next find the eigenvectors for λ = 2. The augmented matrix for the system of equations needed

to find these eigenvectors is 


0 2 −2 | 0
1 1 −1 | 0
−1 1 −1 | 0




and the row reduced echelon form is



1 0 0 0
0 1 −1 0
0 0 0 0




and so the eigenvectors are of the form

t




0
1
1




where t ̸= 0.
Finally find the eigenvectors for λ = 4. The augmented matrix for the system of equations needed

to find these eigenvectors is 


−2 2 −2 | 0
1 −1 −1 | 0
−1 1 −3 | 0




and the row reduced echelon form is



1 −1 0 0
0 0 1 0
0 0 0 0


 .

Therefore, the eigenvectors are of the form

t




1
1
0




where t ̸= 0.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



12.1. EIGENVALUES AND EIGENVECTORS OF A MATRIX 223

12.1.4 Triangular Matrices

Although it is usually hard to solve the eigenvalue problem, there is a kind of matrix for which this
is not the case. These are the upper or lower triangular matrices. I will illustrate by a examples.

Example 12.1.6 Let A =




1 2 4
0 4 7
0 0 6


 . Find its eigenvalues.

You need to solve

0 = det






1 2 4
0 4 7
0 0 6


− λ




1 0 0
0 1 0
0 0 1






= det




1− λ 2 4
0 4− λ 7
0 0 6− λ


 = (1− λ) (4− λ) (6− λ) .

Thus the eigenvalues are just the diagonal entries of the original matrix. You can see it would work
this way with any such matrix. These matrices are called upper triangular. Stated precisely, a
matrix A is upper triangular if Aij = 0 for all i > j. Similarly, it is easy to find the eigenvalues for
a lower triangular matrix, on which has all zeros above the main diagonal.

12.1.5 Defective And Nondefective Matrices

Definition 12.1.7 By the fundamental theorem of algebra, it is possible to write the characteristic
equation in the form

(λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λm)
rm = 0

where ri is some integer no smaller than 1. Thus the eigenvalues are λ1, λ2, · · · , λm. The algebraic

multiplicity of λj is defined to be rj .

Example 12.1.8 Consider the matrix

A =




1 1 0
0 1 1
0 0 1


 (12.5)

What is the algebraic multiplicity of the eigenvalue λ = 1?

In this case the characteristic equation is

det (A− λI) = (1− λ)
3
= 0

or equivalently,
det (λI −A) = (λ− 1)

3
= 0.

Therefore, λ is of algebraic multiplicity 3.

Definition 12.1.9 The geometric multiplicity of an eigenvalue is the dimension of the eigenspace,

ker (A− λI) .

Example 12.1.10 Find the geometric multiplicity of λ = 1 for the matrix in (12.5).
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We need to solve 


0 1 0
0 0 1
0 0 0






x
y
z


 =




0
0
0


 .

The augmented matrix which must be row reduced to get this solution is therefore,




0 1 0 | 0
0 0 1 | 0
0 0 0 | 0




This requires z = y = 0 and x is arbitrary. Thus the eigenspace is

t




1
0
0


 , t ∈ F.

It follows the geometric multiplicity of λ = 1 is 1.

Definition 12.1.11 An n×n matrix is called defective if the geometric multiplicity is not equal to
the algebraic multiplicity for some eigenvalue. Sometimes such an eigenvalue for which the geometric
multiplicity is not equal to the algebraic multiplicity is called a defective eigenvalue. If the geometric
multiplicity for an eigenvalue equals the algebraic multiplicity, the eigenvalue is sometimes referred
to as nondefective.

Here is another more interesting example of a defective matrix.

Example 12.1.12 Let

A =




2 −2 −1
−2 −1 −2
14 25 14


 .

Find the eigenvectors and eigenvalues.

In this case the eigenvalues are 3, 6, 6 where we have listed 6 twice because it is a zero of algebraic
multiplicity two, the characteristic equation being

(λ− 3) (λ− 6)
2
= 0.

It remains to find the eigenvectors for these eigenvalues. First consider the eigenvectors for λ = 3.
You must solve






2 −2 −1
−2 −1 −2
14 25 14


− 3




1 0 0
0 1 0
0 0 1








x
y
z


 =




0
0
0


 .

The augmented matrix is 


−1 −2 −1 | 0
−2 −4 −2 | 0
14 25 11 | 0




and the row reduced echelon form is



1 0 −1 0
0 1 1 0
0 0 0 0



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so the eigenvectors are nonzero vectors of the form




t
−t
t


 = t




1
−1
1




Next consider the eigenvectors for λ = 6. This requires you to solve






2 −2 −1
−2 −1 −2
14 25 14


− 6




1 0 0
0 1 0
0 0 1








x
y
z


 =




0
0
0




and the augmented matrix for this system of equations is




−4 −2 −1 | 0
−2 −7 −2 | 0
14 25 8 | 0




The row reduced echelon form is 


1 0 1
8 0

0 1 1
4 0

0 0 0 0




and so the eigenvectors for λ = 6 are of the form

t




− 1
8

− 1
4

1




or written more simply,

t




−1
−2
8




where t ∈ F.
Note that in this example the eigenspace for the eigenvalue λ = 6 is of dimension 1 because there

is only one parameter. However, this eigenvalue is of multiplicity two as a root to the characteristic
equation. Thus this eigenvalue is a defective eigenvalue. However, the eigenvalue 3 is nondefective.
The matrix is defective because it has a defective eigenvalue.

The word, defective, seems to suggest there is something wrong with the matrix. This is in fact
the case. Defective matrices are a lot of trouble in applications and we may wish they never occurred.
However, they do occur as the above example shows. When you study linear systems of differential
equations, you will have to deal with the case of defective matrices and you will see how awful they
are. The reason these matrices are so horrible to work with is that it is impossible to obtain a basis
of eigenvectors. When you study differential equations, solutions to first order systems are expressed
in terms of eigenvectors of a certain matrix times eλt where λ is an eigenvalue. In order to obtain a
general solution of this sort, you must have a basis of eigenvectors. For a defective matrix, such a basis
does not exist and so you have to go to something called generalized eigenvectors. Unfortunately,
it is never explained in beginning differential equations courses why there are enough generalized
eigenvectors and eigenvectors to represent the general solution. In fact, this reduces to a difficult
question in linear algebra equivalent to the existence of something called the Jordan Canonical form
which is much more difficult than everything discussed in the entire differential equations course. If
you become interested in this, see Appendix A.

Ultimately, the algebraic issues which will occur in differential equations are a red herring anyway.
The real issues relative to existence of solutions to systems of ordinary differential equations are
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analytical, having much more to do with calculus than with linear algebra although this will likely
not be made clear when you take a beginning differential equations class.

In terms of algebra, this lack of a basis of eigenvectors says that it is impossible to obtain a
diagonal matrix which is similar to the given matrix.

Although there may be repeated roots to the characteristic equation, (12.2) and it is not known
whether the matrix is defective in this case, there is an important theorem which holds when con-
sidering eigenvectors which correspond to distinct eigenvalues.

Theorem 12.1.13 Suppose Mvi = λivi, i = 1, · · · , r , vi ̸= 0, and that if i ̸= j, then λi ̸= λj.
Then the set of eigenvectors, {v1, · · · ,vr} is linearly independent.

Proof. Suppose the claim of the lemma is not true. Then there exists a subset of this set of
vectors

{w1, · · · ,wr} ⊆ {v1, · · · ,vk}
such that

r∑

j=1

cjwj = 0 (12.6)

where each cj ̸= 0. Say Mwj = µjwj where

{µ1, · · · , µr} ⊆ {λ1, · · · , λk} ,

the µj being distinct eigenvalues of M . Out of all such subsets, let this one be such that r is as
small as possible. Then necessarily, r > 1 because otherwise, c1w1 = 0 which would imply w1 = 0,
which is not allowed for eigenvectors.

Now apply M to both sides of (12.6).

r∑

j=1

cjµjwj = 0. (12.7)

Next pick µk ̸= 0 and multiply both sides of (12.6) by µk. Such a µk exists because r > 1. Thus

r∑

j=1

cjµkwj = 0 (12.8)

Subtract the sum in (12.8) from the sum in (12.7) to obtain

r∑

j=1

cj
(
µk − µj

)
wj = 0

Now one of the constants cj
(
µk − µj

)
equals 0, when j = k. Therefore, r was not as small as

possible after all. �
Here is another proof in case you did not follow the above.

Theorem 12.1.14 Suppose Mvi = λivi, i = 1, · · · , r , vi ̸= 0, and that if i ̸= j, then λi ̸= λj.
Then the set of eigenvectors, {v1, · · · ,vr} is linearly independent.

Proof: Suppose the conclusion is not true. Then in the matrix
(
v1 v2 · · · vr

)

not every column is a pivot column. Let the pivot columns be {w1, · · · ,wk}, k < r. Then there
exists v ∈ {v1, · · · ,vr} , Mv =λvv, v /∈{w1, · · · ,wk} , such that

v =

k∑

i=1

ciwi. (12.9)
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Then doing M to both sides yields

λvv =
k∑

i=1

ciλwi
wi (12.10)

But also you could multiply both sides of (12.9) by λv to get

λvv =
k∑

i=1

ciλvwi.

And now subtracting this from (12.10) yields

0 =
k∑

i=1

ci (λv − λwi
)wi

and by independence of the {w1, · · · ,wk} , this requires ci (λv − λwi
) = 0 for each i. Since the

eigenvalues are distinct, λv−λwi
̸= 0 and so each ci = 0. But from (12.9), this requires v = 0 which

is impossible because v is an eigenvector and

Eigenvectors are never equal to zero! �

12.1.6 Diagonalization

First of all, here is what it means for two matrices to be similar.

Definition 12.1.15 Let A,B be two n × n matrices. Then they are similar if and only if there
exists an invertible matrix S such that

A = S−1BS

Proposition 12.1.16 Define for n× n matrices A ∼ B if A is similar to B. Then

A ∼ A,

If A ∼ B then B ∼ A

If A ∼ B and B ∼ C then A ∼ C

Proof: It is clear that A ∼ A because you could just take S = I. If A ∼ B, then for some S
invertible,

A = S−1BS

and so
SAS−1 = B

But then (
S−1

)−1
AS−1 = B

which shows that B ∼ A.
Now suppose A ∼ B and B ∼ C. Then there exist invertible matrices S, T such that

A = S−1BS, B = T−1CT.

Therefore,
A = S−1T−1CTS = (TS)

−1
C (TS)

showing that A is similar to C. �
For your information, when ∼ satisfies the above conditions, it is called a similarity relation.

Similarity relations are very significant in mathematics.
When a matrix is similar to a diagonal matrix, the matrix is said to be diagonalizable. I think

this is one of the worst monstrosities for a word that I have ever seen. Nevertheless, it is commonly
used in linear algebra. It turns out to be the same as nondefective which will follow easily from later
material. The following is the precise definition.
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Definition 12.1.17 Let A be an n×n matrix. Then A is diagonalizable if there exists an invertible
matrix S such that

S−1AS = D

where D is a diagonal matrix. This means D has a zero as every entry except for the main diagonal.
More precisely, Dij = 0 unless i = j. Such matrices look like the following.




∗ 0
. . .

0 ∗




where ∗ might not be zero.

The most important theorem about diagonalizability1 is the following major result.

Theorem 12.1.18 An n × n matrix is diagonalizable if and only if Fn has a basis of eigenvectors
of A. Furthermore, you can take the matrix S described above, to be given as

S =
(
v1 v2 · · · vn

)

where here the vk are the eigenvectors in the basis for Fn. If A is diagonalizable, the eigenvalues of
A are the diagonal entries of the diagonal matrix.

Proof: Suppose there exists a basis of eigenvectors {vk} where Avk = λkvk. Then let S be
given as above. It follows S−1 exists and is of the form

S−1 =




wT
1

wT
2
...

wT
n




where wT
k vj = δkj . Then




λ1 0
. . .

0 λn


 =




wT
1

wT
2
...

wT
n



(
λ1v1 λ2v2 · · · λnvn

)

=




wT
1

wT
2
...

wT
n



(
Av1 Av2 · · · Avn

)

= S−1AS

Next suppose A is diagonalizable so that S−1AS = D. Let S =
(
v1 v2 · · · vn

)
where the

columns are the vk and

D =




λ1 0
. . .

0 λn




Then

AS = SD =
(
v1 v2 · · · vn

)



λ1 0
. . .

0 λn




1This word has 9 syllables
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and so (
Av1 Av2 · · · Avn

)
=
(
λ1v1 λ2v2 · · · λnvn

)

showing the vi are eigenvectors of A and the λk are eigenvectors. Now the vk form a basis for Fn

because the matrix S having these vectors as columns is given to be invertible. �

Example 12.1.19 Let A =




2 0 0
1 4 −1
−2 −4 4


 . Find a matrix, S such that S−1AS = D, a diag-

onal matrix.

Solving det (λI −A) = 0 yields the eigenvalues are 2 and 6 with 2 an eigenvalue of multiplicity
two. Solving (2I −A)x = 0 to find the eigenvectors, you find that the eigenvectors are

a




−2
1
0


+ b




1
0
1




where a, b are scalars. An eigenvector for λ = 6 is




0
1
−2


 . Let the matrix S be

S =




−2 1 0
1 0 1
0 1 −2




That is, the columns are the eigenvectors. Then

S−1 =




− 1
4

1
2

1
4

1
2 1 1

2
1
4

1
2 − 1

4


 .

S−1AS =




− 1
4

1
2

1
4

1
2 1 1

2
1
4

1
2 − 1

4






2 0 0
1 4 −1
−2 −4 4






−2 1 0
1 0 1
0 1 −2




=




2 0 0
0 2 0
0 0 6


 .

We know the result from the above theorem, but it is nice to see it work in a specific example just
the same. You may wonder if there is a need to find S−1. The following is an example of a situation
where this is needed. It is one of the major applications of diagonalizability.

Example 12.1.20 Here is a matrix. A =




2 1 0
0 1 0
−1 −1 1


 Find A50.

Sometimes this sort of problem can be made easy by using diagonalization. In this case there
are eigenvectors, 


0
0
1


 ,




−1
1
0


 ,




−1
0
1


 ,
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the first two corresponding to λ = 1 and the last corresponding to λ = 2. Then let the eigenvectors
be the columns of the matrix, S. Thus

S =




0 −1 −1
0 1 0
1 0 1




Then also

S−1 =




1 1 1
0 1 0
−1 −1 0




and

S−1AS =




1 1 1
0 1 0
−1 −1 0






2 1 0
0 1 0
−1 −1 1






0 −1 −1
0 1 0
1 0 1




=




1 0 0
0 1 0
0 0 2


 = D

Now it follows

A = SDS−1 =




0 −1 −1
0 1 0
1 0 1






1 0 0
0 1 0
0 0 2






1 1 1
0 1 0
−1 −1 0


 .

Note that
(
SDS−1

)2
= SDS−1SDS−1 = SD2S−1 and

(
SDS−1

)3
= SDS−1SDS−1SDS−1 = SD3S−1,

etc. In general, you can see that (
SDS−1

)n
= SDnS−1

In other words, An = SDnS−1. Therefore,

A50 = SD50S−1

=




0 −1 −1
0 1 0
1 0 1






1 0 0
0 1 0
0 0 2




50


1 1 1
0 1 0
−1 −1 0


 .

It is easy to raise a diagonal matrix to a power.




1 0 0
0 1 0
0 0 2




50

=




1 0 0
0 1 0
0 0 250


 .

It follows

A50 =




0 −1 −1
0 1 0
1 0 1






1 0 0
0 1 0
0 0 250






1 1 1
0 1 0
−1 −1 0




=




250 −1 + 250 0
0 1 0

1− 250 1− 250 1


 .
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That isn’t too hard. However, this would have been horrendous if you had tried to multiply A50 by
hand.

This technique of diagonalization is also important in solving the differential equations resulting
from vibrations. Sometimes you have systems of differential equation and when you diagonalize an
appropriate matrix, you “decouple” the equations. This is very nice. It makes hard problems trivial.

The above example is entirely typical. If A = SDS−1 then Am = SDmS−1 and it is easy to
compute Dm. More generally, you can define functions of the matrix using power series in this way.

12.1.7 The Matrix Exponential

When A is diagonalizable, one can easily define what is meant by eA. Here is how. You know

S−1AS = D

where D is a diagonal matrix. You also know that if D is of the form



λ1 0
. . .

0 λn


 (12.11)

then

Dm =




λm1 0
. . .

0 λmn




and that
Am = SDmS−1

as shown above. Recall why this was.
A = SDS−1

and so

Am =

n times︷ ︸︸ ︷
SDS−1SDS−1SDS−1 · · ·SDS−1

= SDmS−1

Now formally write the following power series for eA

eA ≡
∞∑

k=0

Ak

k!
=

∞∑

k=0

SDkS−1

k!
= S

∞∑

k=0

Dk

k!
S−1

If D is given above in (12.11), the above sum is of the form

S
∞∑

k=0




1
k!λ

k
1 0

. . .

0 1
k!λ

k
n


S−1

= S




∑∞
k=0

1
k!λ

k
1 0

. . .

0
∑∞

k=0
1
k!λ

k
n


S−1

= S




eλ1 0
. . .

0 eλn


S−1

and this last thing is the definition of what is meant by eA.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



232 SPECTRAL THEORY

Example 12.1.21 Let

A =




2 −1 −1
1 2 1
−1 1 2




Find eA.

The eigenvalues happen to be 1, 2, 3 and eigenvectors associated with these eigenvalues are



−1
−1
1


↔ 2,




0
−1
1


↔ 1,




−1
0
1


↔ 3

Then let

S =




−1 0 −1
−1 −1 0
1 1 1




and so

S−1 =




−1 −1 −1
1 0 1
0 1 1




and

D =




2 0 0
0 1 0
0 0 3




Then the matrix exponential is



−1 0 −1
−1 −1 0
1 1 1






e2 0 0
0 e1 0
0 0 e3






−1 −1 −1
1 0 1
0 1 1







e2 e2 − e3 e2 − e3

e2 − e e2 e2 − e
−e2 + e −e2 + e3 −e2 + e+ e3




Isn’t that nice? You could also talk about sin (A) or cos (A) etc. You would just have to use a
different power series.

This matrix exponential is actually a useful idea when solving autonomous systems of first order
linear differential equations. These are equations which are of the form

x′ = Ax

where x is a vector in Rn or Cn and A is an n × n matrix. Then it turns out that the solution to
the above system of equations is x (t) = eAtc where c is a constant vector.

12.1.8 Complex Eigenvalues

Sometimes you have to consider eigenvalues which are complex numbers. This occurs in differential
equations for example. You do these problems exactly the same way as you do the ones in which
the eigenvalues are real. Here is an example.

Example 12.1.22 Find the eigenvalues and eigenvectors of the matrix

A =




1 0 0
0 2 −1
0 1 2


 .

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



12.2. SOME APPLICATIONS OF EIGENVALUES AND EIGENVECTORS 233

You need to find the eigenvalues. Solve

det






1 0 0
0 2 −1
0 1 2


− λ




1 0 0
0 1 0
0 0 1




 = 0.

This reduces to (λ− 1)
(
λ2 − 4λ+ 5

)
= 0. The solutions are λ = 1, λ = 2 + i, λ = 2− i.

There is nothing new about finding the eigenvectors for λ = 1 so consider the eigenvalue λ = 2+i.
You need to solve


(2 + i)




1 0 0
0 1 0
0 0 1


−




1 0 0
0 2 −1
0 1 2








x
y
z


 =




0
0
0




In other words, you must consider the augmented matrix



1 + i 0 0 | 0
0 i 1 | 0
0 −1 i | 0




for the solution. Divide the top row by (1 + i) and then take −i times the second row and add to
the bottom. This yields 


1 0 0 | 0
0 i 1 | 0
0 0 0 | 0




Now multiply the second row by −i to obtain



1 0 0 | 0
0 1 −i | 0
0 0 0 | 0




Therefore, the eigenvectors are of the form

t




0
i
1


 .

You should find the eigenvectors for λ = 2− i. These are

t




0
−i
1


 .

As usual, if you want to get it right you had better check it.



1 0 0
0 2 −1
0 1 2






0
−i
1


 =




0
−1− 2i
2− i


 = (2− i)




0
−i
1




so it worked.

12.2 Some Applications Of Eigenvalues And Eigenvectors

12.2.1 Principle Directions

Recall that n× n matrices can be considered as linear transformations. If F is a 3 × 3 real matrix
having positive determinant, it can be shown that F = RU where R is a rotation matrix and U is a
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symmetric real matrix having positive eigenvalues. An application of this wonderful result, known
to mathematicians as the right polar factorization, is to continuum mechanics where a chunk of
material is identified with a set of points in three dimensional space.

The linear transformation, F in this context is called the deformation gradient and it describes
the local deformation of the material. Thus it is possible to consider this deformation in terms of
two processes, one which distorts the material and the other which just rotates it. It is the matrix
U which is responsible for stretching and compressing. This is why in elasticity, the stress is often
taken to depend on U which is known in this context as the right Cauchy Green strain tensor.
In this context, the eigenvalues will always be positive. The symmetry of U allows the proof of a
theorem which says that if λM is the largest eigenvalue, then in every other direction other than
the one corresponding to the eigenvector for λM the material is stretched less than λM and if λm
is the smallest eigenvalue, then in every other direction other than the one corresponding to an
eigenvector of λm the material is stretched more than λm. This process of writing a matrix as a
product of two such matrices, one of which preserves distance and the other which distorts is also
important in applications to geometric measure theory an interesting field of study in mathematics
and to the study of quadratic forms which occur in many applications such as statistics. Here we
are emphasizing the application to mechanics in which the eigenvectors of the symmetric matrix U
determine the principle directions, those directions in which the material is stretched the most
or the least.

Example 12.2.1 Find the principle directions determined by the matrix



29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44




The eigenvalues are 3, 1, and 1
2 .

It is nice to be given the eigenvalues. The largest eigenvalue is 3 which means that in the
direction determined by the eigenvector associated with 3 the stretch is three times as large. The
smallest eigenvalue is 1/2 and so in the direction determined by the eigenvector for 1/2 the material
is stretched by a factor of 1/2, becoming locally half as long. It remains to find these directions.
First consider the eigenvector for 3. It is necessary to solve



3




1 0 0
0 1 0
0 0 1


−




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44










x
y
z


 =




0
0
0




Thus the augmented matrix for this system of equations is




4
11 − 6

11 − 6
11 | 0

− 6
11

91
44 − 19

44 | 0

− 6
11 − 19

44
91
44 | 0




The row reduced echelon form is 


1 0 −3 0
0 1 −1 0
0 0 0 0



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and so the principle direction for the eigenvalue, 3 in which the material is stretched to the maximum
extent is 


3
1
1


 .

A direction vector (or unit vector) in this direction is




3/
√
11

1/
√
11

1/
√
11


 .

You should show that the direction in which the material is compressed the most is in the direction




0

−1/
√
2

1/
√
2




Note this is meaningful information which you would have a hard time finding without the theory
of eigenvectors and eigenvalues.

12.2.2 Migration Matrices

There are applications which are of great importance which feature only one eigenvalue.

Definition 12.2.2 Let n locations be denoted by the numbers 1, 2, · · · , n. Also suppose it is the case
that each year aij denotes the proportion of residents in location j which move to location i. Also
suppose no one escapes or emigrates from without these n locations. This last assumption requires∑

i aij = 1. Such matrices in which the columns are nonnegative numbers which sum to one are
called Markov matrices. In this context describing migration, they are also called migration

matrices.

Example 12.2.3 Here is an example of one of these matrices.

(
.4 .2
.6 .8

)

Thus if it is considered as a migration matrix, .4 is the proportion of residents in location 1 which
stay in location one in a given time period while .6 is the proportion of residents in location 1 which
move to location 2 and .2 is the proportion of residents in location 2 which move to location 1.
Considered as a Markov matrix, these numbers are usually identified with probabilities.

If v =(x1, · · · , xn)T where xi is the population of location i at a given instant, you obtain the
population of location i one year later by computing

∑
j aijxj = (Av)i . Therefore, the population

of location i after k years is
(
Akv

)
i
. An obvious application of this would be to a situation in which

you rent trailers which can go to various parts of a city and you observe through experiments the
proportion of trailers which go from point i to point j in a single day. Then you might want to find
how many trailers would be in all the locations after 8 days.

Proposition 12.2.4 Let A = (aij) be a migration matrix. Then 1 is always an eigenvalue for A.

Proof: Remember that det
(
BT
)
= det (B) . Therefore,

det (A− λI) = det
(
(A− λI)

T
)
= det

(
AT − λI

)
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because IT = I. Thus the characteristic equation for A is the same as the characteristic equation
for AT and so A and AT have the same eigenvalues. We will show that 1 is an eigenvalue for AT

and then it will follow that 1 is an eigenvalue for A.
Remember that for a migration matrix,

∑
i aij = 1. Therefore, if AT = (bij) so bij = aji, it

follows that ∑

j

bij =
∑

j

aji = 1.

Therefore, from matrix multiplication,

AT




1
...
1


 =




∑
j bij
...∑
j bij


 =




1
...
1




which shows that




1
...
1


 is an eigenvector for AT corresponding to the eigenvalue, λ = 1. As

explained above, this shows that λ = 1 is an eigenvalue for A because A and AT have the same
eigenvalues. �

Example 12.2.5 Consider the migration matrix




.6 0 .1

.2 .8 0

.2 .2 .9


 for locations 1, 2, and 3. Suppose

initially there are 100 residents in location 1, 200 in location 2 and 400 in location 4. Find the
population in the three locations after 10 units of time.

From the above, it suffices to consider




.6 0 .1

.2 .8 0

.2 .2 .9




10


100
200
400


 =




115. 085 829 22
120. 130 672 44
464. 783 498 34




Of course you would need to round these numbers off.
A related problem asks for how many there will be in the various locations after a long time. It

turns out that if some power of the migration matrix has all positive entries, then there is a limiting
vector x = limk→∞Akx0 where x0 is the initial vector describing the number of inhabitants in the
various locations initially. This vector will be an eigenvector for the eigenvalue 1 because

x = lim
k→∞

Akx0 = lim
k→∞

Ak+1x0 = A lim
k→∞

Akx = Ax,

and the sum of its entries will equal the sum of the entries of the initial vector x0 because this sum
is preserved for every multiplication by A since

∑

i

∑

j

aijxj =
∑

j

xj

(
∑

i

aij

)
=
∑

j

xj .

Here is an example. It is the same example as the one above but here it will involve the long time
limit.

Example 12.2.6 Consider the migration matrix




.6 0 .1

.2 .8 0

.2 .2 .9


 for locations 1, 2, and 3. Suppose

initially there are 100 residents in location 1, 200 in location 2 and 400 in location 4. Find the
population in the three locations after a long time.
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You just need to find the eigenvector which goes with the eigenvalue 1 and then normalize it so
the sum of its entries equals the sum of the entries of the initial vector. Thus you need to find a
solution to 





1 0 0
0 1 0
0 0 1


−




.6 0 .1

.2 .8 0

.2 .2 .9








x
y
z


 =




0
0
0




The augmented matrix is 


. 4 0 −. 1 | 0
−. 2 . 2 0 | 0
−. 2 −. 2 . 1 | 0




and its row reduced echelon form is



1 0 −. 25 0
0 1 −. 25 0
0 0 0 0




Therefore, the eigenvectors are

s




(1/4)
(1/4)
1




and all that remains is to choose the value of s such that

1

4
s+

1

4
s+ s = 100 + 200 + 400

This yields s = 1400
3 and so the long time limit would equal

1400

3




(1/4)
(1/4)
1


 =




116. 666 666 666 666 7
116. 666 666 666 666 7
466. 666 666 666 666 7


 .

You would of course need to round these numbers off. You see that you are not far off after just 10
units of time. Therefore, you might consider this as a useful procedure because it is probably easier
to solve a simple system of equations than it is to raise a matrix to a large power.

Example 12.2.7 Suppose a migration matrix is




1
5

1
2

1
5

1
4

1
4

1
2

11
20

1
4

3
10



. Find the comparison between

the populations in the three locations after a long time.

This amounts to nothing more than finding the eigenvector for λ = 1. Solve







1 0 0
0 1 0
0 0 1


−




1
5

1
2

1
5

1
4

1
4

1
2

11
20

1
4

3
10










x
y
z


 =




0
0
0


 .
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The augmented matrix is 


4
5 − 1

2 − 1
5 | 0

− 1
4

3
4 − 1

2 | 0

− 11
20 − 1

4
7
10 | 0




The row echelon form is 


1 0 − 16
19 0

0 1 − 18
19 0

0 0 0 0




and so an eigenvector is 


16
18
19


 .

Thus there will be 18
16

th
more in location 2 than in location 1. There will be 19

18

th
more in location 3

than in location 2.
You see the eigenvalue problem makes these sorts of determinations fairly simple.
There are many other things which can be said about these sorts of migration problems.

They include things like the gambler’s ruin problem which asks for the probability that a compulsive
gambler will eventually lose all his money. However those problems are not so easy although they
still involve eigenvalues and eigenvectors.

There are many other important applications of eigenvalue problems. We have just given a few
such applications here. As pointed out, this is a very hard problem but sometimes you don’t need
to find the eigenvalues exactly.

12.3 The Estimation Of Eigenvalues

There are ways to estimate the eigenvalues for matrices from just looking at the matrix. The
most famous is known as Gerschgorin’s theorem. This theorem gives a rough idea where the
eigenvalues are just from looking at the matrix.

Theorem 12.3.1 Let A be an n× n matrix. Consider the n Gerschgorin discs defined as

Di ≡



λ ∈ C : |λ− aii| ≤

∑

j ̸=i

|aij |



 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are off the
main diagonal and form the disc centered at aii having this radius. The union of these discs contains
σ (A) , the spectrum of A.

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (aij)
∑

j ̸=i

aijxj = (λ− aii)xi.

Therefore, picking k such that |xk| ≥ |xj | for all xj , it follows that |xk| ̸= 0 since |x| ̸= 0 and

|xk|
∑

j ̸=k

|akj | ≥
∑

j ̸=k

|akj | |xj | ≥

∣∣∣∣∣∣

∑

j ̸=k

akjxj

∣∣∣∣∣∣
= |λ− akk| |xk| .
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Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc. �

Example 12.3.2 Suppose the matrix is

A =




21 −16 −6
14 60 12
7 8 38




Estimate the eigenvalues.

The exact eigenvalues are 35, 56, and 28. The Gerschgorin disks are

D1 = {λ ∈ C : |λ− 21| ≤ 22} ,

D2 = {λ ∈ C : |λ− 60| ≤ 26} ,
and

D3 = {λ ∈ C : |λ− 38| ≤ 15} .
Gerschgorin’s theorem says these three disks contain the eigenvalues. Now 35 is in D3, 56 is in D2

and 28 is in D1.
More can be said when the Gerschgorin disks are disjoint but this is an advanced topic which

requires the theory of functions of a complex variable. If you are interested and have a background
in complex variable techniques, this is in [11]

12.4 Exercises

1. State the eigenvalue problem from an algebraic perspective.

2. State the eigenvalue problem from a geometric perspective.

3. If A is the matrix of a linear transformation which rotates all vectors in R2 through 30◦, explain
why A cannot have any real eigenvalues.

4. If A is an n× n matrix and c is a nonzero constant, compare the eigenvalues of A and cA.

5. If A is an invertible n× n matrix, compare the eigenvalues of A and A−1. More generally, for
m an arbitrary integer, compare the eigenvalues of A and Am.

6. Let A,B be invertible n × n matrices which commute. That is, AB = BA. Suppose x is an
eigenvector of B. Show that then Ax must also be an eigenvector for B.

7. Suppose A is an n × n matrix and it satisfies Am = A for some m a positive integer larger
than 1. Show that if λ is an eigenvalue of A then |λ| equals either 0 or 1.

8. Show that if Ax = λx and Ay = λy, then whenever a, b are scalars,

A (ax+ by) = λ (ax+ by) .

Does this imply that ax+ by is an eigenvector? Explain.

9. Find the eigenvalues and eigenvectors of the matrix




−1 −1 7
−1 0 4
−1 −1 5


 .

Determine whether the matrix is defective.
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10. Find the eigenvalues and eigenvectors of the matrix



−3 −7 19
−2 −1 8
−2 −3 10


 .

Determine whether the matrix is defective.

11. Find the eigenvalues and eigenvectors of the matrix



−7 −12 30
−3 −7 15
−3 −6 14


 .

Determine whether the matrix is defective.

12. Find the eigenvalues and eigenvectors of the matrix



7 −2 0
8 −1 0
−2 4 6


 .

Determine whether the matrix is defective.

13. Find the eigenvalues and eigenvectors of the matrix



3 −2 −1
0 5 1
0 2 4


 .

Determine whether the matrix is defective.

14. Find the eigenvalues and eigenvectors of the matrix



6 8 −23
4 5 −16
3 4 −12




Determine whether the matrix is defective.

15. Find the eigenvalues and eigenvectors of the matrix



5 2 −5
12 3 −10
12 4 −11


 .

Determine whether the matrix is defective.

16. Find the eigenvalues and eigenvectors of the matrix



20 9 −18
6 5 −6
30 14 −27


 .

Determine whether the matrix is defective.

17. Find the eigenvalues and eigenvectors of the matrix



1 26 −17
4 −4 4
−9 −18 9


 .

Determine whether the matrix is defective.
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18. Find the eigenvalues and eigenvectors of the matrix




3 −1 −2
11 3 −9
8 0 −6


 .

Determine whether the matrix is defective.

19. Find the eigenvalues and eigenvectors of the matrix




−2 1 2
−11 −2 9
−8 0 7


 .

Determine whether the matrix is defective.

20. Find the eigenvalues and eigenvectors of the matrix




2 1 −1
2 3 −2
2 2 −1


 .

Determine whether the matrix is defective.

21. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2
0 2 −2
2 0 2


 .

22. Find the eigenvalues and eigenvectors of the matrix




9 6 −3
0 6 0
−3 −6 9


 .

Determine whether the matrix is defective.

23. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2
0 2 −2
2 0 2


 . Determine

whether the matrix is defective.

24. Find the complex eigenvalues and eigenvectors of the matrix




−4 2 0
2 −4 0
−2 2 −2


 . Determine

whether the matrix is defective.

25. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6
7 −5 −6
−1 7 2


 . Determine

whether the matrix is defective.

26. Find the complex eigenvalues and eigenvectors of the matrix




4 2 0
−2 4 0
−2 2 6


 . Determine

whether the matrix is defective.
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27. Let A be a real 3 × 3 matrix which has a complex eigenvalue of the form a+ ib where b ̸= 0.
Could A be defective? Explain. Either give a proof or an example.

28. Let T be the linear transformation which reflects vectors about the x axis. Find a matrix for
T and then find its eigenvalues and eigenvectors.

29. Let T be the linear transformation which rotates all vectors in R2 counterclockwise through
an angle of π/2. Find a matrix of T and then find eigenvalues and eigenvectors.

30. Let A be the 2× 2 matrix of the linear transformation which rotates all vectors in R2 through
an angle of θ. For which values of θ does A have a real eigenvalue?

31. Let T be the linear transformation which reflects all vectors in R3 through the xy plane. Find
a matrix for T and then obtain its eigenvalues and eigenvectors.

32. Find the principle direction for stretching for the matrix




13
9

2
15

√
5 8

45

√
5

2
15

√
5 6

5
4
15

8
45

√
5 4

15
61
45



.

The eigenvalues are 2 and 1.

33. Find the principle directions for the matrix




5
2 − 1

2 0

− 1
2

5
2 0

0 0 1




34. Suppose the migration matrix for three locations is




.5 0 .3

.3 .8 0

.2 .2 .7


 .

Find a comparison for the populations in the three locations after a long time.

35. Suppose the migration matrix for three locations is




.1 .1 .3

.3 .7 0

.6 .2 .7


 .

Find a comparison for the populations in the three locations after a long time.

36. You own a trailer rental company in a large city and you have four locations, one in the South
East, one in the North East, one in the North West, and one in the South West. Denote these
locations by SE,NE,NW, and SW respectively. Suppose you observe that in a typical day, .8
of the trailers starting in SE stay in SE, .1 of the trailers in NE go to SE, .1 of the trailers
in NW end up in SE, .2 of the trailers in SW end up in SE, .1 of the trailers in SE end up
in NE,.7 of the trailers in NE end up in NE,.2 of the trailers in NW end up in NE,.1 of the
trailers in SW end up in NE, .1 of the trailers in SE end up in NW, .1 of the trailers in NE
end up in NW, .6 of the trailers in NW end up in NW, .2 of the trailers in SW end up in NW,
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0 of the trailers in SE end up in SW, .1 of the trailers in NE end up in SW, .1 of the trailers in
NW end up in SW, .5 of the trailers in SW end up in SW. You begin with 20 trailers in each
location. Approximately how many will you have in each location after a long time? Will any
location ever run out of trailers?

37. Let A be the n×n, n > 1, matrix of the linear transformation which comes from the projection
v 7→projw (v). Show that A cannot be invertible. Also show that A has an eigenvalue equal to
1 and that for λ an eigenvalue, |λ| ≤ 1.

38. Let v be a unit vector in Rn and let A = I − 2vvT . Show that A has an eigenvalue equal to
−1.

39. Let M be an n × n matrix and suppose x1, · · · ,xn are n eigenvectors which form a linearly
independent set. Form the matrix S by making the columns these vectors. Show that S−1

exists and that S−1MS is a diagonal matrix (one having zeros everywhere except on the
main diagonal) having the eigenvalues of M on the main diagonal. When this can be done the
matrix is diagonalizable. This is presented in the text. You should write it down in your
own words filling in the details without looking at the text.

40. Show that a matrix M is diagonalizable if and only if it has a basis of eigenvectors. Hint:

The first part is done in Problem 39. It only remains to show that if the matrix can be
diagonalized by some matrix S giving D = S−1MS for D a diagonal matrix, then it has a
basis of eigenvectors. Try using the columns of the matrix S. Like the last problem, you should
try to do this yourself without consulting the text. These problems are a nice review of the
meaning of matrix multiplication.

41. Suppose A is an n× n matrix which is diagonally dominant. This means

|aii| >
∑

j

|aij | .

Show that A−1 must exist.

42. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

43. Let M be an n× n matrix. Then define the adjoint of M,denoted by M∗ to be the transpose
of the conjugate of M. For example,

(
2 i

1 + i 3

)∗
=

(
2 1− i
−i 3

)
.

A matrix M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix are all
real. If the self adjoint matrix has all real entries, it is called symmetric.

44. Suppose A is an n×n matrix consisting entirely of real entries but a+ib is a complex eigenvalue
having the eigenvector x+ iy. Here x and y are real vectors. Show that then a− ib is also an
eigenvalue with the eigenvector x − iy. Hint: You should remember that the conjugate of a
product of complex numbers equals the product of the conjugates. Here a + ib is a complex
number whose conjugate equals a− ib.

45. Recall an n × n matrix is said to be symmetric if it has all real entries and if A = AT . Show
the eigenvectors and eigenvalues of a real symmetric matrix are real.

46. Recall an n× n matrix is said to be skew symmetric if it has all real entries and if A = −AT .
Show that any nonzero eigenvalues must be of the form ib where i2 = −1. In words, the
eigenvalues are either 0 or pure imaginary. Show also that the eigenvectors corresponding to
the pure imaginary eigenvalues are imaginary in the sense that every entry is of the form ix
for x ∈ R.
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47. A discreet dynamical system is of the form

x (k + 1) = Ax (k) , x (0) = x0

where A is an n× n matrix and x (k) is a vector in Rn. Show first that

x (k) = Akx0

for all k ≥ 1. If A is nondefective so that it has a basis of eigenvectors, {v1, · · · ,vn} where

Avj = λjvj

you can write the initial condition x0 in a unique way as a linear combination of these eigen-
vectors. Thus

x0 =

n∑

j=1

ajvj

Now explain why

x (k) =
n∑

j=1

ajA
kvj =

n∑

j=1

ajλ
k
jvj

which gives a formula for x (k) , the solution of the dynamical system.

48. Suppose A is an n × n matrix and let v be an eigenvector such that Av = λv. Also suppose
the characteristic polynomial of A is

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Explain why (
An + an−1A

n−1 + · · ·+ a1A+ a0I
)
v = 0

If A is nondefective, give a very easy proof of the Cayley Hamilton theorem based on this.
Recall this theorem says A satisfies its characteristic equation,

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

49. Suppose an n× n nondefective matrix A has only 1 and −1 as eigenvalues. Find A12.

50. Suppose the characteristic polynomial of an n× n matrix A is 1− λn. Find Amn where m is
an integer. Hint: Note first that A is nondefective. Why?

51. Sometimes sequences come in terms of a recursion formula. An example is the Fibonacci
sequence.

x0 = 1 = x1, xn+1 = xn + xn−1

Show this can be considered as a discreet dynamical system as follows.

(
xn+1

xn

)
=

(
1 1
1 0

)(
xn
xn−1

)
,

(
x1
x0

)
=

(
1
1

)

Now use the technique of Problem 47 to find a formula for xn.

52. Let A be an n× n matrix having characteristic polynomial

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Show that a0 = (−1)
n
det (A).
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53. Find

(
3
2 1

− 1
2 0

)35

. Next find

lim
n→∞

(
3
2 1

− 1
2 0

)n

54. Find eA where A is the matrix

(
3
2 1

− 1
2 0

)
in the above problem.
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Matrices And The Inner Product

13.1 Symmetric And Orthogonal Matrices

13.1.1 Orthogonal Matrices

Remember that to find the inverse of a matrix was often a long process. However, it was very easy
to take the transpose of a matrix. For some matrices, the transpose equals the inverse and when the
matrix has all real entries, and this is true, it is called an orthogonal matrix. Recall the following
definition given earlier.

Definition 13.1.1 A real n× n matrix U is called an Orthogonal matrix if UUT = UTU = I.

Example 13.1.2 Show the matrix

U =




1√
2

1√
2

1√
2

− 1√
2




is orthogonal.

UUT =




1√
2

1√
2

1√
2

− 1√
2






1√
2

1√
2

1√
2

− 1√
2


 =

(
1 0
0 1

)
.

Example 13.1.3 Let U =




1 0 0
0 0 −1
0 −1 0


 . Is U orthogonal?

The answer is yes. This is because the columns form an orthonormal set of vectors as well as the
rows. As discussed above this is equivalent to UTU = I.

UTU =




1 0 0
0 0 −1
0 −1 0




T 


1 0 0
0 0 −1
0 −1 0


 =




1 0 0
0 1 0
0 0 1




When you say that U is orthogonal, you are saying that
∑

j

UijU
T
jk =

∑

j

UijUkj = δik.

In words, the dot product of the ith row of U with the kth row gives 1 if i = k and 0 if i ̸= k. The
same is true of the columns because UTU = I also. Therefore,

∑

j

UT
ijUjk =

∑

j

UjiUjk = δik

247
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which says that the one column dotted with another column gives 1 if the two columns are the same
and 0 if the two columns are different.

More succinctly, this states that if u1, · · · ,un are the columns of U, an orthogonal matrix, then

ui · uj = δij ≡
{

1 if i = j
0 if i ̸= j

. (13.1)

Definition 13.1.4 A set of vectors, {u1, · · · ,un} is said to be an orthonormal set if (13.1).

Theorem 13.1.5 If {u1, · · · ,um} is an orthonormal set of vectors then it is linearly independent.

Proof: Using the properties of the dot product,

0 · u =(0+ 0) · u = 0 · u+ 0 · u

and so, subtracting 0 · u from both sides yields 0 · u = 0. Now suppose
∑

j cjuj = 0. Then from
the properties of the dot product,

ck =
∑

j

cjδjk =
∑

j

cj (uj · uk) =


∑

j

cjuj


 · uk = 0 · uk = 0.

Since k was arbitrary, this shows that each ck = 0 and this has shown that if
∑

j cjuj = 0, then
each cj = 0. This is what it means for the set of vectors to be linearly independent. �

Example 13.1.6 Let U =




1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −
√
6
3



. Is U an orthogonal matrix?

The answer is yes. This is because the columns (rows) form an orthonormal set of vectors.
The importance of orthogonal matrices is that they change components of vectors relative to

different Cartesian coordinate systems. Geometrically, the orthogonal matrices are exactly those
which preserve all distances in the sense that if x ∈ Rn and U is orthogonal, then ||Ux|| = ||x||
because

||Ux||2 = (Ux)
T
Ux = xTUTUx = xT Ix = ||x||2 .

Observation 13.1.7 Suppose U is an orthogonal matrix. Then det (U) = ±1.

This is easy to see from the properties of determinants. Thus

det (U)
2
= det

(
UT
)
det (U) = det

(
UTU

)
= det (I) = 1.

Orthogonal matrices are divided into two classes, proper and improper. The proper orthogonal
matrices are those whose determinant equals 1 and the improper ones are those whose determinants
equal −1. The reason for the distinction is that the improper orthogonal matrices are sometimes
considered to have no physical significance since they cause a change in orientation which would
correspond to material passing through itself in a non physical manner. Thus in considering which
coordinate systems must be considered in certain applications, you only need to consider those
which are related by a proper orthogonal transformation. Geometrically, the linear transformations
determined by the proper orthogonal matrices correspond to the composition of rotations.
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13.1.2 Symmetric And Skew Symmetric Matrices

Definition 13.1.8 A real n× n matrix A, is symmetric if AT = A. If A = −AT , then A is called
skew symmetric.

Theorem 13.1.9 The eigenvalues of a real symmetric matrix are real. The eigenvalues of a real
skew symmetric matrix are 0 or pure imaginary.

Proof: The proof of this theorem is in [11]. It is best understood as a special case of more
general considerations. However, here is a proof in this special case.

Recall that for a complex number a + ib, the complex conjugate, denoted by a+ ib is given by
the formula a+ ib = a − ib. The notation, x will denote the vector which has every entry replaced
by its complex conjugate.

Suppose A is a real symmetric matrix and Ax = λx. Then

λxTx =
(
Ax
)T

x = xTATx = xTAx = λxTx.

Dividing by xTx on both sides yields λ = λ which says λ is real. (Why?)
Next suppose A = −AT so A is skew symmetric and Ax = λx. Then

λxTx =
(
Ax
)T

x = xTATx = −xTAx = −λxTx

and so, dividing by xTx as before, λ = −λ. Letting λ = a+ ib, this means a− ib = −a− ib and so
a = 0. Thus λ is pure imaginary. �

Example 13.1.10 Let A =

(
0 −1
1 0

)
. This is a skew symmetric matrix. Find its eigenvalues.

Its eigenvalues are obtained by solving the equation det

(
−λ −1
1 −λ

)
= λ2+1 = 0. You see the

eigenvalues are ±i, pure imaginary.

Example 13.1.11 Let A =

(
1 2
2 3

)
. This is a symmetric matrix. Find its eigenvalues.

Its eigenvalues are obtained by solving the equation, det

(
1− λ 2
2 3− λ

)
= −1− 4λ+ λ2 = 0

and the solution is λ = 2 +
√
5 and λ = 2−

√
5.

Definition 13.1.12 An n × n matrix A = (aij) is called a diagonal matrix if aij = 0 whenever
i ̸= j. For example, a diagonal matrix is of the form indicated below where ∗ denotes a number.




∗ 0 · · · 0

0 ∗
...

...
. . . 0

0 · · · 0 ∗




Theorem 13.1.13 Let A be a real symmetric matrix. Then there exists an orthogonal matrix U
such that UTAU is a diagonal matrix. Moreover, the diagonal entries are the eigenvalues of A.

Proof: The proof is given later.

Corollary 13.1.14 If A is a real n× n symmetric matrix, then there exists an orthonormal set of
eigenvectors, {u1, · · · ,un} .
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Proof: Since A is symmetric, then by Theorem 13.1.13, there exists an orthogonal matrix U
such that UTAU = D, a diagonal matrix whose diagonal entries are the eigenvalues of A. Therefore,
since A is symmetric and all the matrices are real,

D = DT = UTATU = UTATU = UTAU = D

showing D is real because each entry of D equals its complex conjugate.1

Finally, let
U =

(
u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn




The equation, UTAU = D implies

AU =
(
Au1 Au2 · · · Aun

)

= UD =
(
λ1u1 λ2u2 · · · λnun

)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui and since
the matrix is orthogonal, the ijth entry of UTU equals δij and so

δij = uT
i uj = ui · uj .

This proves the corollary because it shows the vectors {ui} form an orthonormal basis. �

Example 13.1.15 Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix




19
9 − 8

15

√
5 2

45

√
5

− 8
15

√
5 − 1

5 − 16
15

2
45

√
5 − 16

15
94
45




given that the eigenvalues are 3, −1, and 2.

The augmented matrix which needs to be row reduced to find the eigenvectors for λ = 3 is




19
9 − 3 − 8

15

√
5 2

45

√
5 | 0

− 8
15

√
5 − 1

5 − 3 − 16
15 | 0

2
45

√
5 − 16

15
94
45 − 3 | 0




and the row reduced echelon form for this is



1 0 − 1
2

√
5 | 0

0 1 3
4 | 0

0 0 0 | 0




1Recall that for a complex number, x+ iy, the complex conjugate, denoted by x+ iy is defined as x− iy.
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Therefore, eigenvectors for λ = 3 are

z




1
2

√
5

− 3
4

1




where z ̸= 0.
The augmented matrix, which must be row reduced to find the eigenvectors for λ = −1, is




19
9 + 1 − 8

15

√
5 2

45

√
5 | 0

− 8
15

√
5 − 1

5 + 1 − 16
15 | 0

2
45

√
5 − 16

15
94
45 + 1 | 0




and the row reduced echelon form is



1 0 − 1
2

√
5 | 0

0 1 −3 | 0
0 0 0 | 0


 .

Therefore, the eigenvectors for λ = −1 are

z




1
2

√
5

3
1


 , z ̸= 0

The augmented matrix which must be row reduced to find the eigenvectors for λ = 2 is




19
9 − 2 − 8

15

√
5 2

45

√
5 | 0

− 8
15

√
5 − 1

5 − 2 − 16
15 | 0

2
45

√
5 − 16

15
94
45 − 2 | 0




and its row reduced echelon form is



1 0 2
5

√
5 | 0

0 1 0 | 0
0 0 0 | 0




so the eigenvectors for λ = 2 are

z




− 2
5

√
5

0
1


 , z ̸= 0.

It remains to find an orthonormal basis. You can check that the dot product of any of these
vectors with another of them gives zero and so it suffices choose z in each case such that the resulting
vector has length 1. First consider the vectors for λ = 3. It is required to choose z such that

z




1
2

√
5

− 3
4

1



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is a unit vector. In other words, you need

z




1
2

√
5

− 3
4

1


 · z




1
2

√
5

− 3
4

1


 = 1.

But the above dot product equals 45
16z

2 and this equals 1 when z = 4
15

√
5. Therefore, the eigenvector

which is desired is

4

15

√
5




1
2

√
5

− 3
4

1


 =




2
3

− 1
5

√
5

4
15

√
5


 .

Next find the eigenvector for λ = −1. The same process requires that 1 = 45
4 z

2 which happens

when z = 2
15

√
5. Therefore, an eigenvector for λ = −1 which has unit length is

2

15

√
5




1
2

√
5

3
1


 =




1
3

2
5

√
5

2
15

√
5


 .

Finally, consider λ = 2. This time you need 1 = 9
5z

2 which occurs when z = 1
3

√
5. Therefore, the

eigenvector is

1

3

√
5




− 2
5

√
5

0
1


 =




− 2
3

0
1
3

√
5


 .

Now recall that the vectors form an orthonormal set of vectors if the matrix having them as
columns is orthogonal. That matrix is




2
3

1
3 − 2

3

− 1
5

√
5 2

5

√
5 0

4
15

√
5 2

15

√
5 1

3

√
5



.

Is this orthogonal? To find out, multiply by its transpose. Thus




2
3 − 1

5

√
5 4

15

√
5

1
3

2
5

√
5 2

15

√
5

− 2
3 0 1

3

√
5







2
3

1
3 − 2

3

− 1
5

√
5 2

5

√
5 0

4
15

√
5 2

15

√
5 1

3

√
5




=




1 0 0
0 1 0
0 0 1


 .

Since the identity was obtained this shows the above matrix is orthogonal and that therefore, the
columns form an orthonormal set of vectors. The problem asks for you to find an orthonormal basis.
However, you will show in Problem 23 that an orthonormal set of n vectors in Rn is always a basis.
Therefore, since there are three of these vectors, they must constitute a basis.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



13.1. SYMMETRIC AND ORTHOGONAL MATRICES 253

Example 13.1.16 Find an orthonormal set of three eigenvectors for the matrix




13
9

2
15

√
5 8

45

√
5

2
15

√
5 6

5
4
15

8
45

√
5 4

15
61
45




given the eigenvalues are 2, and 1.

The eigenvectors which go with λ = 2 are obtained from row reducing the matrix




13
9 − 2 2

15

√
5 8

45

√
5 | 0

2
15

√
5 6

5 − 2 4
15 | 0

8
45

√
5 4

15
61
45 − 2 | 0




and its row reduced echelon form is



1 0 − 1
2

√
5 | 0

0 1 − 3
4 | 0

0 0 0 | 0




which shows the eigenvectors for λ = 2 are

z




1
2

√
5

3
4

1




and a choice for z which will produce a unit vector is z = 4
15

√
5. Therefore, the vector we want is




2
3

1
5

√
5

4
15

√
5


 .

Next consider the eigenvectors for λ = 1. The matrix which must be row reduced is




13
9 − 1 2

15

√
5 8

45

√
5 | 0

2
15

√
5 6

5 − 1 4
15 | 0

8
45

√
5 4

15
61
45 − 1 | 0




and its row reduced echelon form is



1 3
10

√
5 2

5

√
5 | 0

0 0 0 | 0
0 0 0 | 0


 .
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Therefore, the eigenvectors are of the form




− 3
10

√
5y − 2

5

√
5z

y
z


 .

This is a two dimensional eigenspace.
Before going further, we want to point out that no matter how we choose y and z the resulting

vector will be orthogonal to the eigenvector for λ = 2. This is a special case of a general result
which states that eigenvectors for distinct eigenvalues of a symmetric matrix are orthogonal. This
is explained in Problem 15. For this case you need to show the following dot product equals zero.




2
3

1
5

√
5

4
15

√
5


 ·




− 3
10

√
5y − 2

5

√
5z

y
z


 (13.2)

This is left for you to do.
Continuing with the task of finding an orthonormal basis, Let y = 0 first. This results in

eigenvectors of the form 


− 2
5

√
5z

0
z




and letting z = 1
3

√
5 you obtain a unit vector. Thus the second vector will be




− 2
5

√
5
(
1
3

√
5
)

0
1
3

√
5


 =




− 2
3

0
1
3

√
5


 .

It remains to find the third vector in the orthonormal basis. This merely involves choosing y and
z in (13.2) in such a way that the resulting vector has dot product with the two given vectors equal
to zero. Thus you need




− 3
10

√
5y − 2

5

√
5z

y
z


 ·




− 2
3

0
1
3

√
5


 =

1

5

√
5y +

3

5

√
5z = 0.

The dot product with the eigenvector for λ = 2 is automatically equal to zero and so all that you
need is the above equation. This is satisfied when z = − 1

3y. Therefore, the vector we want is of the

form 


− 3
10

√
5y − 2

5

√
5
(
− 1

3y
)

y(
− 1

3y
)


 =




− 1
6

√
5y

y
− 1

3y




and it only remains to choose y in such a way that this vector has unit length. This occurs when
y = 2

5

√
5. Therefore, the vector we want is

2

5

√
5




− 1
6

√
5

1
− 1

3


 =




− 1
3

2
5

√
5

− 2
15

√
5


 .
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The three eigenvectors which constitute an orthonormal basis are




− 1
3

2
5

√
5

− 2
15

√
5


 ,




− 2
3

0
1
3

√
5


 , and




2
3

1
5

√
5

4
15

√
5


 .

To check our work and see if this is really an orthonormal set of vectors, we make them the
columns of a matrix and see if the resulting matrix is orthogonal. The matrix is




− 1
3 − 2

3
2
3

2
5

√
5 0 1

5

√
5

− 2
15

√
5 1

3

√
5 4

15

√
5



.

This matrix times its transpose equals




− 1
3 − 2

3
2
3

2
5

√
5 0 1

5

√
5

− 2
15

√
5 1

3

√
5 4

15

√
5







− 1
3

2
5

√
5 − 2

15

√
5

− 2
3 0 1

3

√
5

2
3

1
5

√
5 4

15

√
5




=




1 0 0
0 1 0
0 0 1




and so this is indeed an orthonormal basis.
Because of the repeated eigenvalue, there would have been many other orthonormal bases which

could have been obtained. It was pretty arbitrary for to take y = 0 in the above argument. We
could just as easily have taken z = 0 or even y = z = 1. Any such change would have resulted in a
different orthonormal basis. Geometrically, what is happening is the eigenspace for λ = 1 was two
dimensional. It can be visualized as a plane in three dimensional space which passes through the
origin. There are infinitely many different pairs of perpendicular unit vectors in this plane.

13.1.3 Diagonalizing A Symmetric Matrix

Recall the following definition:

Definition 13.1.17 An n × n matrix A = (aij) is called a diagonal matrix if aij = 0 whenever
i ̸= j. For example, a diagonal matrix is of the form indicated below where ∗ denotes a number.




∗ 0 · · · 0

0 ∗
...

...
. . . 0

0 · · · 0 ∗




Definition 13.1.18 An n × n matrix A is said to be non defective or diagonalizable if there
exists an invertible matrix S such that S−1AS = D where D is a diagonal matrix as described above.

Some matrices are non defective and some are not. As indicated in Theorem 13.1.13 if A is a real
symmetric matrix, there exists an orthogonal matrix U such that UTAU = D a diagonal matrix.
Therefore, every symmetric matrix is non defective because if U is an orthogonal matrix, its inverse
is UT . In the following example, this orthogonal matrix will be found.
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Example 13.1.19 Let A =




1 0 0
0 3

2
1
2

0 1
2

3
2


 . Find an orthogonal matrix U such that UTAU is a

diagonal matrix.

In this case, a tedious computation shows the eigenvalues are 2 and 1. First we will find an
eigenvector for the eigenvalue 2. This involves row reducing the following augmented matrix.




1 0 0 | 0
0 2− 3

2 − 1
2 | 0

0 − 1
2 2− 3

2 | 0




The row reduced echelon form is 


1 0 0 | 0
0 1 −1 | 0
0 0 0 | 0




and so an eigenvector is 


0
1
1


 .

However, it is desired that the eigenvectors obtained all be unit vectors and so dividing this vector
by its length gives 


0

1/
√
2

1/
√
2


 .

Next consider the case of the eigenvalue, 1. The matrix which needs to be row reduced in this case
is 



0 0 0 | 0
0 1− 3

2 − 1
2 | 0

0 − 1
2 1− 3

2 | 0




The row reduced echelon form is 


0 1 1 | 0
0 0 0 | 0
0 0 0 | 0


 .

Therefore, the eigenvectors are of the form



s
−t
t


 .

Two of these which are orthonormal are



1
0
0


 and




0

−1/
√
2

1/
√
2


 .

An orthogonal matrix which works in the process is then obtained by letting these vectors be the
columns. 


0 1 0

−1/
√
2 0 1/

√
2

1/
√
2 0 1/

√
2


 .
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It remains to verify this works. UTAU is of the form




0 − 1
2

√
2 1

2

√
2

1 0 0

0 1
2

√
2 1

2

√
2







1 0 0
0 3

2
1
2

0 1
2

3
2







0 1 0

−1/
√
2 0 1/

√
2

1/
√
2 0 1/

√
2




=




1 0 0
0 1 0
0 0 2


 ,

the desired diagonal matrix.

13.2 Fundamental Theory And Generalizations

13.2.1 Block Multiplication Of Matrices

Consider the following problem (
A B
C D

)(
E F
G H

)

You know how to do this. You get
(
AE +BG AF +BH
CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E, F,G are matrices of a size such that the
multiplications and additions needed in the above formula all make sense. Would the formula be
true in this case? I will show below that this is true.

Suppose A is a matrix of the form

A =




A11 · · · A1m

...
. . .

...
Ar1 · · · Arm


 (13.3)

where Aij is a si × pj matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · , r. Such a
matrix is called a block matrix, also a partitioned matrix. How do you get the block Aij? Here
is how for A an m× n matrix:

si×m︷ ︸︸ ︷(
0 Isi×si 0

)
A

n×pj︷ ︸︸ ︷


0

Ipj×pj

0


. (13.4)

In the block column matrix on the right, you need to have cj−1 rows of zeros above the small pj×pj
identity matrix where the columns of A involved in Aij are cj , · · · , cj + pj − 1 and in the block row
matrix on the left, you need to have ri − 1 columns of zeros to the left of the si × si identity matrix
where the rows of A involved in Aij are ri, · · · , ri + si. An important observation to make is that
the matrix on the right specifies columns to use in the block and the one on the left specifies the
rows used. Thus the block Aij in this case is a matrix of size si × pj . There is no overlap between
the blocks of A. Thus the identity n×n identity matrix corresponding to multiplication on the right
of A is of the form 


Ip1×p1

0
. . .

0 Ipm×pm



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these little identity matrices don’t overlap. A similar conclusion follows from consideration of the
matrices Isi×si .

Next consider the question of multiplication of two block matrices. Let B be a block matrix of
the form 


B11 · · · B1p

...
. . .

...
Br1 · · · Brp


 (13.5)

and A is a block matrix of the form



A11 · · · A1m

...
. . .

...
Ap1 · · · Apm


 (13.6)

and that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · · , p}. (That is the two
matrices, Bis and Asj are conformable.) and that for fixed ij, it follows BisAsj is the same size for
each s so that it makes sense to write

∑
sBisAsj .

The following theorem says essentially that when you take the product of two matrices, you can
do it two ways. One way is to simply multiply them forming BA. The other way is to partition
both matrices, formally multiply the blocks to get another block matrix and this one will be BA
partitioned. Before presenting this theorem, here is a simple lemma which is really a special case of
the theorem.

Lemma 13.2.1 Consider the following product.




0

I
0


( 0 I 0

)

where the first is n× r and the second is r × n. The small identity matrix I is an r × r matrix and
there are l zero rows above I and l zero columns to the left of I in the right matrix. Then the product
of these matrices is a block matrix of the form




0 0 0

0 I 0

0 0 0




Proof: From the definition of the way you multiply matrices, the product is






0

I
0


0 · · ·




0

I
0


0




0

I
0


 e1 · · ·




0

I
0


 er




0

I
0


0 · · ·




0

I
0


0




which yields the claimed result. In the formula ej refers to the column vector of length r which has
a 1 in the jth position. �

Theorem 13.2.2 Let B be a q × p block matrix as in (13.5) and let A be a p × n block matrix as
in (13.6) such that Bis is conformable with Asj and each product, BisAsj for s = 1, · · · , p is of the
same size so they can be added. Then BA can be obtained as a block matrix such that the ijth block
is of the form ∑

s

BisAsj . (13.7)
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Proof: From (13.4)

BisAsj =
(
0 Iri×ri 0

)
B




0

Ips×ps

0


( 0 Ips×ps

0
)
A




0

Iqj×qj

0




where here it is assumed Bis is ri × ps and Asj is ps × qj . The product involves the sth block in the
ith row of blocks for B and the sth block in the jth column of A. Thus there are the same number of
rows above the Ips×ps

as there are columns to the left of Ips×ps
in those two inside matrices. Then

from Lemma 13.2.1



0

Ips×ps

0


( 0 Ips×ps

0
)
=




0 0 0

0 Ips×ps
0

0 0 0




Since the blocks of small identity matrices do not overlap,

∑

s




0 0 0

0 Ips×ps
0

0 0 0


 =




Ip1×p1
0

. . .

0 Ipp×pp


 = I

and so ∑

s

BisAsj =

∑

s

(
0 Iri×ri 0

)
B




0

Ips×ps

0


( 0 Ips×ps

0
)
A




0

Iqj×qj

0




=
(
0 Iri×ri 0

)
B
∑

s




0

Ips×ps

0


( 0 Ips×ps

0
)
A




0

Iqj×qj

0




=
(
0 Iri×ri 0

)
BIA




0

Iqj×qj

0


 =

(
0 Iri×ri 0

)
BA




0

Iqj×qj

0




which equals the ijth block of BA. Hence the ijth block of BA equals the formal multiplication
according to matrix multiplication, ∑

s

BisAsj . �

Example 13.2.3 Let an n× n matrix have the form

A =

(
a b

c P

)

where P is n− 1× n− 1. Multiply it by

B =

(
p q

r Q

)

where B is also an n× n matrix and Q is n− 1× n− 1.

You use block multiplication

(
a b

c P

)(
p q

r Q

)
=

(
ap+ br aq+ bQ
pc+ Pr cq+ PQ

)
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Note that this all makes sense. For example, b = 1×n−1 and r = n−1×1 so br is a 1×1. Similar
considerations apply to the other blocks.

Here is an interesting and significant application of block multiplication. In this theorem, pM (t)
denotes the characteristic polynomial, det (tI −M) . Thus the zeros of this polynomial are the eigen-
values of the matrix M .

Theorem 13.2.4 Let A be an m× n matrix and let B be an n×m matrix for m ≤ n. Then

pBA (t) = tn−mpAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has n −m
extra zero eigenvalues.

Proof: Use block multiplication to write
(
AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)

(
I A
0 I

)(
0 0
B BA

)
=

(
AB ABA
B BA

)
.

Therefore, (
I A
0 I

)−1(
AB 0
B 0

)(
I A
0 I

)
=

(
0 0
B BA

)

Since the two matrices above are similar it follows that

(
0 0
B BA

)
and

(
AB 0
B 0

)
have the

same characteristic polynomials. Therefore, noting that BA is an n×n matrix and AB is an m×m
matrix,

tm det (tI −BA) = tn det (tI −AB)

and so det (tI −BA) = pBA (t) = tn−m det (tI −AB) = tn−mpAB (t). �

13.2.2 Orthonormal Bases, Gram Schmidt Process

Not all bases for Fn are created equal. Recall F equals either C or R and the dot product is given
by

x · y ≡ (x,y) ≡ ⟨x,y⟩ =
∑

j

xjyj .

The best bases are orthonormal. Much of what follows will be for Fn in the interest of generality.

Definition 13.2.5 Suppose {v1, · · · ,vk} is a set of vectors in Fn. It is an orthonormal set if

vi · vj = δij =

{
1 if i = j
0 if i ̸= j

Every orthonormal set of vectors is automatically linearly independent.

Proposition 13.2.6 Suppose {v1, · · · ,vk} is an orthonormal set of vectors. Then it is linearly
independent.

Proof: Suppose
∑k

i=1 civi = 0. Then taking dot products with vj ,

0 = 0 · vj =
∑

i

civi · vj =
∑

i

ciδij = cj .

Since j is arbitrary, this shows the set is linearly independent as claimed. �

It turns out that if X is any subspace of Fm, then there exists an orthonormal basis for X. This
follows from the use of the next lemma applied to a basis for X.
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Lemma 13.2.7 Let {x1, · · · ,xn} be a linearly independent subset of Fp, p ≥ n. Then there exist
orthonormal vectors {u1, · · · ,un} which have the property that for each k ≤ n, span(x1, · · · ,xk) =
span (u1, · · · ,uk) .

Proof: Let u1 ≡ x1/ |x1| . Thus for k = 1, span (u1) = span (x1) and {u1} is an orthonormal
set. Now suppose for some k < n, u1, · · · , uk have been chosen such that (uj ,ul) = δjl and
span (x1, · · · ,xk) = span (u1, · · · ,uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj)uj∣∣∣xk+1 −

∑k
j=1 (xk+1 · uj)uj

∣∣∣
, (13.8)

where the denominator is not equal to zero because the xj form a basis, and so

xk+1 /∈ span (x1, · · · ,xk) = span (u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span (u1, · · · ,uk,xk+1) = span (x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span (u1, · · · ,uk,uk+1) which is seen easily by solving (13.8) for xk+1 and it follows

span (x1, · · · ,xk,xk+1) = span (u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 · ul) = C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) (uj · ul)




= C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) δlj




= C ((xk+1 · ul)− (xk+1 · ul)) = 0.

The vectors, {uj}nj=1 , generated in this way are therefore orthonormal because each vector has unit
length. �

The process by which these vectors were generated is called the Gram Schmidt process. Note
that from the construction, each xk is in the span of {u1, · · · ,uk}. In terms of matrices, this says

(x1 · · ·xn) = (u1 · · ·un)R

where R is an upper triangular matrix. This is closely related to the QR factorization discussed
earlier. It is called the thin QR factorization. If the Gram Schmidt process is used to enlarge
{u1 · · ·un} to an orthonormal basis for Fm, {u1 · · ·un,un+1, · · · ,um} then if Q is the matrix which
has these vectors as columns and if R is also enlarged to R′ by adding in rows of zeros, if necessary,
to form an m× n matrix, then the above would be of the form

(x1 · · ·xn) = (u1 · · ·um)R′

and you could read off the orthonormal basis for span (x1 · · ·xn) by simply taking the first n columns
of Q = (u1 · · ·um). This is convenient because computer algebra systems are set up to find QR
factorizations.

Example 13.2.8 Find an orthonormal basis for span






1
3
1


 ,




2
0
1




.
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This is really easy to do using a computer algebra system.




1 2
3 0
1 1


 =




1
11

√
11 19

506

√
11

√
46 3

46

√
46

3
11

√
11 − 9

506

√
11
√
46 1

46

√
46

1
11

√
11 4

253

√
11

√
46 − 3

23

√
46






√
11 3

11

√
11

0 1
11

√
11
√
46

0 0




and so the desired orthonormal basis is



1
11

√
11

3
11

√
11

1
11

√
11


 ,




19
506

√
11
√
46

− 9
506

√
11
√
46

4
253

√
11
√
46




◮

13.2.3 Schur’s Theorem

Every matrix is related to an upper triangular matrix in a particularly significant way. This is Schur’s
theorem and it is the most important theorem in the spectral theory of matrices. The important
result which makes this theorem possible is the Gram Schmidt procedure of Lemma 13.2.7.

Definition 13.2.9 An n×n matrix U, is unitary if UU∗ = I = U∗U where U∗ is defined to be the
transpose of the conjugate of U. Thus Uij = U∗

ji. Note that every real orthogonal matrix is unitary.
For A any matrix A∗ just defined as the conjugate of the transpose is called the adjoint.

Note that if U =
(
v1 · · · vn

)
where the vk are orthonormal vectors in Cn, then U is unitary.

This follows because the ijth entry of U∗U is vT
i vj = δij since the vi are assumed orthonormal.

Lemma 13.2.10 The following holds. (AB)
∗
= B∗A∗.

Proof: From the definition and remembering the properties of complex conjugation,
(
(AB)

∗)
ji

= (AB)ij

=
∑

k

AikBkj =
∑

k

AikBkj

=
∑

k

B∗
jkA

∗
ki = (B∗A∗)ji �

Theorem 13.2.11 Let A be an n× n matrix. Then there exists a unitary matrix U such that

U∗AU = T, (13.9)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal listed
according to multiplicity as roots of the characteristic equation.

Proof: The theorem is clearly true if A is a 1× 1 matrix. Just let U = 1, the 1× 1 matrix which
has entry 1. Suppose it is true for (n− 1) × (n− 1) matrices and let A be an n × n matrix. Then
let v1 be a unit eigenvector for A. Then there exists λ1 such that

Av1 = λ1v1, |v1| = 1.

Extend {v1} to a basis and then use the Gram - Schmidt process to obtain {v1, · · · ,vn}, an or-
thonormal basis of Cn. Let U0 be a matrix whose ith column is vi so that U0 is unitary. Also
U∗
0AU0 is of the form 



λ1 ∗ · · · ∗
0
... A1

0



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where A1 is an n − 1 × n − 1 matrix. Now by induction, there exists an (n− 1) × (n− 1) unitary

matrix Ũ1 such that
Ũ∗
1A1Ũ1 = Tn−1,

an upper triangular matrix. Consider

U1 ≡
(

1 0

0 Ũ1

)
.

An application of block multiplication shows that U1 is a unitary matrix and also that

U∗
1U

∗
0AU0U1 =

(
1 0

0 Ũ∗
1

)(
λ1 ∗
0 A1

)(
1 0

0 Ũ1

)

=

(
λ1 ∗
0 Tn−1

)
≡ T

where T is upper triangular. Then let U = U0U1. Since (U0U1)
∗
= U∗

1U
∗
0 , it follows that A is similar

to T and that U0U1 is unitary. Hence A and T have the same characteristic polynomials, and since
the eigenvalues of T are the diagonal entries listed with multiplicity, this proves the theorem. �

As a simple consequence of the above theorem, here is an interesting lemma.

Lemma 13.2.12 Let A be of the form

A =




P1 · · · ∗
...

. . .
...

0 · · · Ps




where Pk is an mk ×mk matrix. Then

det (A) =
∏

k

det (Pk) .

Proof: Let Uk be an mk ×mk unitary matrix such that

U∗
kPkUk = Tk

where Tk is upper triangular. Then letting

U =




U1 · · · 0
...

. . .
...

0 · · · Us


 ,

it follows

U∗ =




U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s




and 


U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s







P1 · · · ∗
...

. . .
...

0 · · · Ps







U1 · · · 0
...

. . .
...

0 · · · Us




=




T1 · · · ∗
...

. . .
...

0 · · · Ts




and so
det (A) =

∏

k

det (Tk) =
∏

k

det (Pk) . �
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Definition 13.2.13 An n × n matrix A is called Hermitian if A = A∗. Thus a real symmetric
matrix is Hermitian.

Theorem 13.2.14 If A is Hermitian, there exists a unitary matrix U such that

U∗AU = D (13.10)

where D is a real diagonal matrix. That is, D has nonzero entries only on the main diagonal and
these are real. Furthermore, the columns of U are an orthonormal basis for Fn.

Proof: From Schur’s theorem above, there exists U unitary such that

U∗AU = T

where T is an upper triangular matrix. Then from Lemma 13.2.10

T ∗ = (U∗AU)
∗
= U∗A∗U = T.

Thus T = T ∗ and T is upper triangular. This can only happen if T is really a diagonal matrix
having real entries on the main diagonal. (If i ̸= j, one of Tij or Tji equals zero. But Tij = Tji and
so they are both zero. Also Tii = Tii.)

Finally, let
U =

(
u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn




The equation, U∗AU = D implies

AU =
(
Au1 Au2 · · · Aun

)

= UD =
(
λ1u1 λ2u2 · · · λnun

)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui and since
the matrix is unitary, the ijth entry of U∗U equals δij and so

δij = uT
i uj = uT

i uj = ui · uj .

This proves the corollary because it shows the vectors {ui} form an orthonormal basis. �

Corollary 13.2.15 If A is a real symmetric (A = AT )matrix, then A is Hermitian and there exists
a real unitary matrix U such that UTAU = D where D is a diagonal matrix.

Proof: This follows from Theorem 13.2.14 which says the eigenvalues are all real. Then if
Ax = λx, the same is true of x. and so in the construction for Schur’s theorem, you can always
deal exclusively with real eigenvectors as long as your matrices are real and symmetric. When you
construct the matrix which reduces the problem to a smaller one having A1 in the lower right corner,
use the Gram Schmidt process on Rn using the real dot product to construct vectors, v2, · · · ,vn in
Rn such that {v1, · · · ,vn} is an orthonormal basis for Rn. The matrix A1 is symmetric also. This
is because for j, k ≥ 2

A1kj = vT
kAvj =

(
vT
kAvj

)T
= vT

j Avk = A1jk.

Therefore, continuing this way, the process of the proof delivers only real vectors and real matrices.
�
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13.3 Least Square Approximation

A very important technique is that of the least square approximation.

Lemma 13.3.1 Let A be an m×n matrix and let A (Fn) denote the set of vectors in Fm which are
of the form Ax for some x ∈ Fn. Then A (Fn) is a subspace of Fm.

Proof: Let Ax and Ay be two points of A (Fn) . It suffices to verify that if a, b are scalars, then
aAx+ bAy is also in A (Fn) . But aAx+ bAy = A (ax+ by) because A is linear. �

There is also a useful observation about orthonormal sets of vectors which is stated in the next
lemma.

Lemma 13.3.2 Suppose {x1,x2, · · · ,xr} is an orthonormal set of vectors. Then if c1, · · · , cr are
scalars, ∣∣∣∣∣

r∑

k=1

ckxk

∣∣∣∣∣

2

=
r∑

k=1

|ck|2 .

Proof: This follows from the definition. From the properties of the dot product and using the
fact that the given set of vectors is orthonormal,

∣∣∣∣∣

r∑

k=1

ckxk

∣∣∣∣∣

2

=




r∑

k=1

ckxk,
r∑

j=1

cjxj




=
∑

k,j

ckcj (xk,xj) =

r∑

k=1

|ck|2 . �

The following theorem gives the equivalence of an orthogonality condition with a minimization
condition.

Theorem 13.3.3 Let y ∈ Fm and let A be an m× n matrix. Then there exists x ∈ Fn minimizing
the function x 7→ |y−Ax|2 . Furthermore, x minimizes this function if and only if

(y−Ax) ·Aw = 0

for all w ∈ Fn.

Proof: Let {Axk} be an orthonormal basis for AFn. Next note that for a given y,

(
y−

r∑

k=1

(Axk,y)Axk, Axj

)
= (y,Axj)−

r∑

k=1

(Axk,y) (Axk, Axj) = 0.

In particular (
y −A

(
r∑

k=1

(Axk,y)xk

)
,w

)
= 0

for all w ∈ AFn since {Axk} is a basis. Also note that by Lemma 13.3.2,

∣∣∣∣∣

r∑

k=1

akAxk

∣∣∣∣∣

2

=

r∑

k=1

|ak|2

because the {Axk} are orthonormal. Therefore, letting

x =

r∑

k=1

(Axk,y)xk,
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∣∣∣∣∣y−
r∑

k=1

ykAxk

∣∣∣∣∣

2

=

∣∣∣∣∣y−Ax+
r∑

k=1

((Axk,y)− yk)Axk

∣∣∣∣∣

2

= |y−Ax|2

+

(
y−Ax,

r∑

k=1

((Axk,y)− yk)Axk

)
+

∣∣∣∣∣

r∑

k=1

((Axk,y)− yk)Axk

∣∣∣∣∣

2

= |y −Ax|2 +
r∑

k=1

|(Axk,y)− yk|2

It follows that the minimum exists and occurs when yk = (Axk,y) for each k. The above shows
that Ax is the closest vector in AFn to y and that (y−Ax,w) = 0 for all w ∈ AFn.

Now suppose x is such that (y−Ax,w) = 0 for all w ∈ AFn. Why is Ax as close as possible to
y? Letting z ∈ Fn,

|y −Az|2 = |y −Ax+A (x− z)|2

= |y −Ax|2 + |A (x− z)|2 +
=0︷ ︸︸ ︷

(y −Ax,A (x− z))

and so the smallest value of |y −Az| is obtained when Ax = Az. Thus Ax is as close as possible to
y if the orthogonality condition holds. �

Recall the definition of the adjoint of a matrix.

Definition 13.3.4 Let A be an m× n matrix. Then

A∗ ≡ (AT ).

This means you take the transpose of A and then replace each entry by its conjugate. This matrix
is called the adjoint. Thus in the case of real matrices having only real entries, the adjoint is just
the transpose.

Lemma 13.3.5 Let A be an m× n matrix. Then

Ax · y = x·A∗y

Proof: This follows from the definition.

Ax · y =
∑

i,j

Aijxjyi

=
∑

i,j

xjA∗
jiyi

= x·A∗y. �

The next corollary gives the technique of least squares.

Corollary 13.3.6 A value of x which solves the problem of Theorem 13.3.3 is obtained by solving
the equation

A∗Ax = A∗y

and furthermore, there exists a solution to this system of equations.

Proof: For x the minimizer of Theorem 13.3.3, (y−Ax) · Aw = 0 for all w ∈ Fn and from
Lemma 13.3.5, this is the same as saying

A∗ (y−Ax) ·w = 0
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for all w ∈ Fn. This implies
A∗y −A∗Ax = 0.

Therefore, there is a solution to the equation of this corollary, and it solves the minimization problem
of Theorem 13.3.3. �

Note that x might not be unique but Ax, the closest point of AFn to y is unique. This was
shown in the above argument. Sometimes people like to consider the x such that Ax is as close as
possible to y and also |x| is as small as possible. It turns out that there exists a unique such x and
it is denoted as A+y. However, this is as far as I will go with this in this part of the book.

13.3.1 The Least Squares Regression Line

For the situation of the least squares regression line discussed here I will specialize to the case of Rn

rather than Fn because it seems this case is by far the most interesting and the extra details are not
justified by an increase in utility. Thus, everywhere you see A∗ it suffices to place AT .

An important application of Corollary 13.3.6 is the problem of finding the least squares regression
line in statistics. Suppose you are given points in xy plane

{(xi, yi)}ni=1

and you would like to find constants m and b such that the line y = mx+ b goes through all these
points. Of course this will be impossible in general. Therefore, try to find m, b to get as close as
possible. The desired system is




y1
...
yn


 =




x1 1
...

...
xn 1



(
m
b

)

which is of the form y = Ax and it is desired to choose m and b to make

∣∣∣∣∣∣∣
A

(
m
b

)
−




y1
...
yn




∣∣∣∣∣∣∣

2

as small as possible. According to Theorem 13.3.3 and Corollary 13.3.6, the best values for m and
b occur as the solution to

ATA

(
m
b

)
= AT




y1
...
yn




where

A =




x1 1
...

...
xn 1


 .

Thus, computing ATA,

( ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

)(
m
b

)
=

( ∑n
i=1 xiyi∑n
i=1 yi

)

Solving this system of equations for m and b,

m =
− (
∑n

i=1 xi) (
∑n

i=1 yi) + (
∑n

i=1 xiyi)n

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2
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and

b =
− (
∑n

i=1 xi)
∑n

i=1 xiyi + (
∑n

i=1 yi)
∑n

i=1 x
2
i

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2 .

One could clearly do a least squares fit for curves of the form y = ax2 + bx+ c in the same way.
In this case you want to solve as well as possible for a, b, and c the system




x21 x1 1
...

...
...

x2n xn 1







a
b
c


 =




y1
...
yn




and one would use the same technique as above. Many other similar problems are important,
including many in higher dimensions and they are all solved the same way.

13.3.2 The Fredholm Alternative

The next major result is called the Fredholm alternative. It comes from Theorem 13.3.3 and Lemma
13.3.5.

Theorem 13.3.7 Let A be an m × n matrix. Then there exists x ∈ Fn such that Ax = y if and
only if whenever A∗z = 0 it follows that z · y = 0.

Proof: First suppose that for some x ∈ Fn, Ax = y. Then letting A∗z = 0 and using Lemma
13.3.5

y · z = Ax · z = x ·A∗z = x · 0 = 0.

This proves half the theorem.
To do the other half, suppose that whenever, A∗z = 0 it follows that z · y = 0. It is necessary

to show there exists x ∈ Fn such that y = Ax. From Theorem 13.3.3 there exists x minimizing
|y −Ax|2 which therefore satisfies

(y −Ax) ·Aw = 0 (13.11)

for all w ∈ Fn. Therefore, for all w ∈ Fn,

A∗ (y −Ax) ·w = 0

which shows that A∗ (y −Ax) = 0. (Why?) Therefore, by assumption,

(y −Ax) · y = 0.

Now by (13.11) with w = x,

(y −Ax) · (y−Ax) = (y −Ax) · y− (y −Ax) ·Ax = 0

showing that y = Ax. �

The following corollary is also called the Fredholm alternative.

Corollary 13.3.8 Let A be an m× n matrix. Then A is onto if and only if A∗ is one to one.

Proof: Suppose first A is onto. Then by Theorem 13.3.7, it follows that for all y ∈ Fm, y · z = 0
whenever A∗z = 0. Therefore, let y = z where A∗z = 0 and conclude that z · z = 0 whenever A∗z =
0. If A∗x = A∗y, then A∗ (x− y)= 0 and so x− y = 0. Thus A∗ is one to one.

Now let y ∈ Fm be given. y · z = 0 whenever A∗z = 0 because, since A∗ is assumed to be one
to one, and 0 is a solution to this equation, it must be the only solution. Therefore, by Theorem
13.3.7 there exists x such that Ax = y therefore, A is onto. �
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13.4 The Right Polar Factorization∗

The right polar factorization involves writing a matrix as a product of two other matrices, one which
preserves distances and the other which stretches and distorts. First here are some lemmas which
review and add to many of the topics discussed so far about adjoints and orthonormal sets and
such things. This is of fundamental significance in geometric measure theory and also in continuum
mechanics. Not surprisingly the stress should depend on the part which stretches and distorts. See
[6].

Lemma 13.4.1 Let A be a Hermitian matrix such that all its eigenvalues are nonnegative. Then

there exists a Hermitian matrix A1/2 such that A1/2 has all nonnegative eigenvalues and
(
A1/2

)2
=

A.

Proof: Since A is Hermitian, there exists a diagonal matrix D having all real nonnegative entries
and a unitary matrix U such that A = U∗DU. Then denote by D1/2 the matrix which is obtained
by replacing each diagonal entry of D with its square root. Thus D1/2D1/2 = D. Then define

A1/2 ≡ U∗D1/2U.

Then (
A1/2

)2
= U∗D1/2UU∗D1/2U = U∗DU = A.

Since D1/2 is real, (
U∗D1/2U

)∗
= U∗

(
D1/2

)∗
(U∗)∗ = U∗D1/2U

so A1/2 is Hermitian. �

Next it is helpful to recall the Gram Schmidt algorithm and observe a certain property stated in
the next lemma.

Lemma 13.4.2 Suppose {w1, · · · ,wr,vr+1, · · · ,vp} is a linearly independent set of vectors such
that {w1, · · · ,wr} is an orthonormal set of vectors. Then when the Gram Schmidt process is applied
to the vectors in the given order, it will not change any of the w1, · · · ,wr.

Proof: Let {u1, · · · ,up} be the orthonormal set delivered by the Gram Schmidt process. Then
u1 = w1 because by definition, u1 ≡ w1/ |w1| = w1. Now suppose uj = wj for all j ≤ k ≤ r. Then
if k < r, consider the definition of uk+1.

uk+1 ≡
wk+1 −

∑k+1
j=1 (wk+1,uj)uj∣∣∣wk+1 −

∑k+1
j=1 (wk+1,uj)uj

∣∣∣

By induction, uj = wj and so this reduces to wk+1/ |wk+1| = wk+1. �

This lemma immediately implies the following lemma.

Lemma 13.4.3 Let V be a subspace of dimension p and let {w1, · · · ,wr} be an orthonormal set of
vectors in V . Then this orthonormal set of vectors may be extended to an orthonormal basis for V,

{w1, · · · ,wr,yr+1, · · · ,yp}

Proof: First extend the given linearly independent set {w1, · · · ,wr} to a basis for V and then
apply the Gram Schmidt theorem to the resulting basis. Since {w1, · · · ,wr} is orthonormal it follows
from Lemma 13.4.2 the result is of the desired form, an orthonormal basis extending {w1, · · · ,wr}.
�

Here is another lemma about preserving distance.
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Lemma 13.4.4 Suppose R is an m × n matrix with m > n and R preserves distances. Then
R∗R = I.

Proof: Since R preserves distances, |Rx| = |x| for every x. Therefore from the axioms of the dot
product,

|x|2 + |y|2 + (x,y) + (y,x)

= |x+ y|2

= (R (x+ y) , R (x+ y))

= (Rx,Rx) + (Ry,Ry) + (Rx, Ry) + (Ry, Rx)

= |x|2 + |y|2 + (R∗Rx,y) + (y, R∗Rx)

and so for all x,y,
(R∗Rx− x,y) + (y,R∗Rx− x) = 0

Hence for all x,y,
Re (R∗Rx− x,y) = 0

Now for a x,y given, choose α ∈ C such that

α (R∗Rx− x,y) = |(R∗Rx− x,y)|

Then

0 = Re (R∗Rx− x,αy) = Reα (R∗Rx− x,y)

= |(R∗Rx− x,y)|

Thus |(R∗Rx− x,y)| = 0 for all x,y because the given x,y were arbitrary. Let y = R∗Rx− x to
conclude that for all x,

R∗Rx− x = 0

which says R∗R = I since x is arbitrary. �

With this preparation, here is the big theorem about the right polar factorization.

Theorem 13.4.5 Let F be an m × n matrix where m ≥ n. Then there exists a Hermitian n × n
matrix U which has all nonnegative eigenvalues and an m × n matrix R which preserves distances
and satisfies R∗R = I such that

F = RU.

Proof: Consider F ∗F. This is a Hermitian matrix because

(F ∗F )∗ = F ∗ (F ∗)∗ = F ∗F

Also the eigenvalues of the n×nmatrix F ∗F are all nonnegative. This is because if x is an eigenvalue,

λ (x,x) = (F ∗Fx,x) = (Fx,Fx) ≥ 0.

Therefore, by Lemma 13.4.1, there exists an n × n Hermitian matrix U having all nonnegative
eigenvalues such that

U2 = F ∗F.

Consider the subspace U (Fn). Let {Ux1, · · · , Uxr} be an orthonormal basis for

U (Fn) ⊆ Fn.

Note that U (Fn) might not be all of Fn. Using Lemma 13.4.3, extend to an orthonormal basis for
all of Fn,

{Ux1, · · · , Uxr,yr+1, · · · ,yn} .
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Next observe that {Fx1, · · · , Fxr} is also an orthonormal set of vectors in Fm. This is because

(Fxk, Fxj) = (F ∗Fxk,xj) =
(
U2xk,xj

)

= (Uxk, U
∗xj) = (Uxk, Uxj) = δjk

Therefore, from Lemma 13.4.3 again, this orthonormal set of vectors can be extended to an or-
thonormal basis for Fm,

{Fx1, · · · , Fxr, zr+1, · · · , zm}
Thus there are at least as many zk as there are yj . Now for x ∈ Fn, since

{Ux1, · · · , Uxr,yr+1, · · · ,yn}

is an orthonormal basis for Fn, there exist unique scalars,

c1 · · · , cr, dr+1, · · · , dn
such that

x =
r∑

k=1

ckUxk +
n∑

k=r+1

dkyk

Define

Rx ≡
r∑

k=1

ckFxk +

n∑

k=r+1

dkzk (13.12)

Then also there exist scalars bk such that

Ux =
r∑

k=1

bkUxk

and so from (13.12),

RUx =

r∑

k=1

bkFxk = F

(
r∑

k=1

bkxk

)

Is F (
∑r

k=1 bkxk) = F (x)?

(
F

(
r∑

k=1

bkxk

)
− F (x) , F

(
r∑

k=1

bkxk

)
− F (x)

)

=

(
(F ∗F )

(
r∑

k=1

bkxk − x

)
,

(
r∑

k=1

bkxk − x

))

=

(
U2

(
r∑

k=1

bkxk − x

)
,

(
r∑

k=1

bkxk − x

))

=

(
U

(
r∑

k=1

bkxk − x

)
, U

(
r∑

k=1

bkxk − x

))

=

(
r∑

k=1

bkUxk − Ux,

r∑

k=1

bkUxk − Ux

)
= 0

Therefore, F (
∑r

k=1 bkxk) = F (x) and this shows

RUx = Fx.

From (13.12) and Lemma 13.3.2 R preserves distances. Therefore, by Lemma 13.4.4 R∗R = I. �
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13.5 The Singular Value Decomposition

In this section, A will be an m× n matrix. To begin with, here is a simple lemma.

Lemma 13.5.1 Let A be an m × n matrix. Then A∗A is self adjoint and all its eigenvalues are
nonnegative.

Proof: It is obvious that A∗A is self adjoint. Suppose A∗Ax = λx. Then λ |x|2 = (λx,x) =
(A∗Ax,x) = (Ax,Ax) ≥ 0. �

Definition 13.5.2 Let A be an m× n matrix. The singular values of A are the square roots of the
positive eigenvalues of A∗A.

With this definition and lemma here is the main theorem on the singular value decomposition.

Theorem 13.5.3 Let A be an m × n matrix. Then there exist unitary matrices, U and V of the
appropriate size such that

U∗AV =

(
σ 0
0 0

)

where σ is of the form

σ =




σ1 0
. . .

0 σk




for the σi the singular values of A.

Proof: By the above lemma and Theorem 13.2.14 there exists an orthonormal basis, {vi}ni=1

such that A∗Avi = σ2
ivi where σ

2
i > 0 for i = 1, · · · , k, (σi > 0) and equals zero if i > k. Thus for

i > k, Avi = 0 because
(Avi, Avi) = (A∗Avi,vi) = (0,vi) = 0.

For i = 1, · · · , k, define ui ∈ Fm by
ui ≡ σ−1

i Avi.

Thus Avi = σiui. Now

(ui,uj) =
(
σ−1
i Avi, σ

−1
j Avj

)
=
(
σ−1
i vi, σ

−1
j A∗Avj

)

=
(
σ−1
i vi, σ

−1
j σ2

jvj

)
=
σj

σi
(vi,vj) = δij .

Thus {ui}ki=1 is an orthonormal set of vectors in Fm. Also,

AA∗ui = AA∗σ−1
i Avi = σ−1

i AA∗Avi = σ−1
i Aσ2

ivi = σ2
iui.

Now extend {ui}ki=1 to an orthonormal basis for all of Fm, {ui}mi=1 and let

U ≡ (u1 · · ·um)
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while V ≡ (v1 · · ·vn) . Thus U is the matrix which has the ui as columns and V is defined as the
matrix which has the vi as columns. Then

U∗AV =




u∗
1
...
u∗
k
...

u∗
m



A (v1 · · ·vn)

=




u∗
1
...
u∗
k
...

u∗
m




(σ1u1 · · ·σkuk0 · · ·0)

=

(
σ 0
0 0

)

where σ is given in the statement of the theorem. �

The singular value decomposition has as an immediate corollary the following interesting result.

Corollary 13.5.4 Let A be an m × n matrix. Then the rank of A and A∗equals the number of
singular values.

Proof: Since V and U are unitary, it follows that

rank (A) = rank (U∗AV )

= rank

(
σ 0
0 0

)

= number of singular values.

Also since U, V are unitary,

rank (A∗) = rank (V ∗A∗U)

= rank
(
(U∗AV )

∗)

= rank

((
σ 0
0 0

)∗)

= number of singular values. �

13.6 Approximation In The Frobenius Norm∗

The Frobenius norm is one of many norms for a matrix. It is arguably the most obvious of all norms.
Here is its definition.

Definition 13.6.1 Let A be a complex m× n matrix. Then

||A||F ≡ (trace (AA∗))1/2

Also this norm comes from the inner product

(A,B)F ≡ trace (AB∗)

Thus ||A||2F is easily seen to equal
∑

ij |aij |
2
so essentially, it treats the matrix as a vector in Fm×n.
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Lemma 13.6.2 Let A be an m× n complex matrix with singular matrix

Σ =

(
σ 0
0 0

)

with σ as defined above. Then
||Σ||2F = ||A||2F (13.13)

and the following hold for the Frobenius norm. If U, V are unitary and of the right size,

||UA||F = ||A||F , ||UAV ||F = ||A||F . (13.14)

Proof: From the definition and letting U, V be unitary and of the right size,

||UA||2F ≡ trace (UAA∗U∗) = trace (AA∗) = ||A||2F
Also,

||AV ||2F ≡ trace (AV V ∗A∗) = trace (AA∗) = ||A||2F .
It follows

||UAV ||2F = ||AV ||2F = ||A||2F .

Now consider (13.13). From what was just shown,

||A||2F = ||UΣV ∗||2F = ||Σ||2F . �

Of course, this shows that

||A||2F =
∑

i

σ2
i ,

the sum of the squares of the singular values of A.
Why is the singular value decomposition important? It implies

A = U

(
σ 0
0 0

)
V ∗

where σ is the diagonal matrix having the singular values down the diagonal. Now sometimes A is
a huge matrix, 1000×2000 or something like that. This happens in applications to situations where
the entries of A describe a picture. What also happens is that most of the singular values are very
small. What if you deleted those which were very small, say for all i ≥ l and got a new matrix,

A′ ≡ U

(
σ′ 0
0 0

)
V ∗?

Then the entries of A′ would end up being close to the entries of A but there is much less information
to keep track of. This turns out to be very useful. More precisely, letting

σ =




σ1 0
. . .

0 σr


 , U∗AV =

(
σ 0
0 0

)
,

||A−A′||2F =

∣∣∣∣
∣∣∣∣U
(
σ − σ′ 0

0 0

)
V ∗
∣∣∣∣
∣∣∣∣
2

F

=

r∑

k=l+1

σ2
k

Thus A is approximated by A′ where A′ has rank l < r. In fact, it is also true that out of all
matrices of rank l, this A′ is the one which is closest to A in the Frobenius norm. Here is why.
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Let B be a matrix which has rank l. Then from Lemma 13.6.2

||A−B||2F = ||U∗ (A−B)V ||2F = ||U∗AV − U∗BV ||2F

=

∣∣∣∣
∣∣∣∣
(
σ 0
0 0

)
− U∗BV

∣∣∣∣
∣∣∣∣
2

F

and since the singular values of A decrease from the upper left to the lower right, it follows that for
B to be closest as possible to A in the Frobenius norm,

U∗BV =

(
σ′ 0
0 0

)

which implies B = A′ above. This is really obvious if you look at a simple example. Say

(
σ 0
0 0

)
=




3 0 0 0
0 2 0 0
0 0 0 0




for example. Then what rank 1 matrix would be closest to this one in the Frobenius norm? Obviously




3 0 0 0
0 0 0 0
0 0 0 0




13.7 Moore Penrose Inverse∗

The singular value decomposition also has a very interesting connection to the problem of least
squares solutions. Recall that it was desired to find x such that |Ax− y| is as small as possible.
Lemma 13.3.3 shows that there is a solution to this problem which can be found by solving the system
A∗Ax = A∗y. Each x which solves this system, solves the minimization problem as was shown in the
lemma just mentioned. Now consider this equation for the solutions of the minimization problem in
terms of the singular value decomposition.

A∗

︷ ︸︸ ︷
V

(
σ 0
0 0

)
U∗

A︷ ︸︸ ︷
U

(
σ 0
0 0

)
V ∗x =

A∗

︷ ︸︸ ︷
V

(
σ 0
0 0

)
U∗y.

Therefore, this yields the following upon using block multiplication and multiplying on the left by
V ∗. (

σ2 0
0 0

)
V ∗x =

(
σ 0
0 0

)
U∗y. (13.15)

One solution to this equation which is very easy to spot is

x = V

(
σ−1 0
0 0

)
U∗y. (13.16)

This special x is denoted by A+y. The matrix V

(
σ−1 0
0 0

)
U∗ is denoted by A+. Thus x just

defined is a solution to the least squares problem of finding the x such that Ax is as close as possible
to y. Suppose now that z is some other solution to this least squares problem. Thus from the above,

(
σ2 0
0 0

)
V ∗z =

(
σ 0
0 0

)
U∗y
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and so, multiplying both sides by

(
σ−2 0
0 0

)
,

(
Ir×r 0
0 0

)
V ∗z =

(
σ−1 0
0 0

)
U∗y

To make V ∗z as small as possible, you would have only the first r entries of V ∗z be nonzero since
the later ones will be zeroed out anyway so they are unnecessary. Hence

V ∗z =

(
σ−1 0
0 0

)
U∗y

and consequently

z = V

(
σ−1 0
0 0

)
U∗y ≡ A+y

However, minimizing |V ∗z| is the same as minimizing |z| because V is unitary. Hence A+y is the
solution to the least squares problem which has smallest norm.

13.8 Exercises

1. Here are some matrices. Label according to whether they are symmetric, skew symmetric, or
orthogonal. If the matrix is orthogonal, determine whether it is proper or improper.

(a)




1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2




(b)




1 2 −3
2 1 4
−3 4 7




(c)




0 −2 −3
2 0 −4
3 4 0




2. Show that every real matrix may be written as the sum of a skew symmetric and a symmetric
matrix. Hint: If A is an n× n matrix, show that B ≡ 1

2

(
A−AT

)
is skew symmetric.

3. Let x be a vector in Rn and consider the matrix I− 2xxT

||x||2 . Show this matrix is both symmetric

and orthogonal.

4. For U an orthogonal matrix, explain why ||Ux|| = ||x|| for any vector x. Next explain why if
U is an n × n matrix with the property that ||Ux|| = ||x|| for all vectors, x, then U must be
orthogonal. Thus the orthogonal matrices are exactly those which preserve distance.

5. A quadratic form in three variables is an expression of the form a1x
2 + a2y

2 + a3z
2 + a4xy +

a5xz + a6yz. Show that every such quadratic form may be written as

(
x y z

)
A




x
y
z




where A is a symmetric matrix.
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6. Given a quadratic form in three variables, x, y, and z, show there exists an orthogonal matrix
U and variables x′, y′, z′ such that




x
y
z


 = U




x′

y′

z′




with the property that in terms of the new variables, the quadratic form is

λ1 (x
′)
2
+ λ2 (y

′)
2
+ λ3 (z

′)
2

where the numbers, λ1, λ2, and λ3 are the eigenvalues of the matrix A in Problem 5.

7. If A is a symmetric invertible matrix, is it always the case that A−1 must be symmetric also?
How about Ak for k a positive integer? Explain.

8. If A,B are symmetric matrices, does it follow that AB is also symmetric?

9. Suppose A,B are symmetric and AB = BA. Does it follow that AB is symmetric?

10. Here are some matrices. What can you say about the eigenvalues of these matrices just by
looking at them?

(a)




0 0 0
0 0 −1
0 1 0




(b)




1 2 −3
2 1 4
−3 4 7




(c)




0 −2 −3
2 0 −4
3 4 0




(d)




1 2 3
0 2 3
0 0 2




11. Find the eigenvalues and eigenvectors of the matrix




c 0 0
0 0 −b
0 b 0


 . Here b, c are real numbers.

12. Find the eigenvalues and eigenvectors of the matrix




c 0 0
0 a −b
0 b a


. Here a, b, c are real

numbers.

13. Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =




11 −1 −4
−1 11 −4
−4 −4 14


 .

Hint: Two eigenvalues are 12 and 18.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



278 MATRICES AND THE INNER PRODUCT

14. Find the eigenvalues and an orthonormal basis of eigenvectors for A.

A =




4 1 −2
1 4 −2
−2 −2 7


 .

Hint: One eigenvalue is 3.

15. Show that if A is a real symmetric matrix and λ and µ are two different eigenvalues, then if x
is an eigenvector for λ and y is an eigenvector for µ, then x · y = 0. Also all eigenvalues are
real. Supply reasons for each step in the following argument. First

λxTx = (Ax)
T
x = xTAx = xTAx = xTλx = λxTx

and so λ = λ. This shows that all eigenvalues are real. It follows all the eigenvectors are real.
Why? Now let x,y, µ and λ be given as above.

λ (x · y) = λx · y = Ax · y = x ·Ay = x·µy = µ (x · y) = µ (x · y)

and so
(λ− µ)x · y = 0.

Since λ ̸= µ, it follows x · y = 0.

16. Suppose U is an orthogonal n× n matrix. Explain why rank (U) = n.

17. Show that if A is an Hermitian matrix and λ and µ are two different eigenvalues, then if x is
an eigenvector for λ and y is an eigenvector for µ, then x · y = 0. Also all eigenvalues are real.
Supply reasons for each step in the following argument. First

λx · x = Ax · x = x·Ax = x·λx = λx · x

and so λ = λ. This shows that all eigenvalues are real. Now let x,y, µ and λ be given as
above.

λ (x · y) = λx · y = Ax · y = x ·Ay = x·µy = µ (x · y) = µ (x · y)
and so

(λ− µ)x · y = 0.

Since λ ̸= µ, it follows x · y = 0.

18. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

19. If a real matrix A has all real eigenvalues, does it follow that A must be symmetric. If so,
explain why and if not, give an example to the contrary.

20. Suppose A is a 3 × 3 symmetric matrix and you have found two eigenvectors which form an
orthonormal set. Explain why their cross product is also an eigenvector.

21. Study the definition of an orthonormal set of vectors. Write it from memory.

22. Determine which of the following sets of vectors are orthonormal sets. Justify your answer.

(a) {(1, 1) , (1,−1)}
(b)

{(
1√
2
, −1√

2

)
, (1, 0)

}

(c)
{(

1
3 ,

2
3 ,

2
3

)
,
(−2

3 ,
−1
3 ,

2
3

)
,
(
2
3 ,

−2
3 ,

1
3

)}
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23. Show that if {u1, · · · ,un} is an orthonormal set of vectors in Fn, then it is a basis. Hint: It
was shown earlier that this is a linearly independent set. If you wish, replace Fn with Rn. Do
this version if you do not know the dot product for vectors in Cn.

24. Fill in the missing entries to make the matrix orthogonal.




−1√
2

−1√
6

1√
3

1√
2 √

6
3



.

25. Fill in the missing entries to make the matrix orthogonal.




2
3

√
2
2

1
6

√
2

2
3

0




26. Fill in the missing entries to make the matrix orthogonal.




1
3 − 2√

5

2
3 0

4
15

√
5




27. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix U and a diagonal matrix D such that UTAU = D.

A =




−1 1 1
1 −1 1
1 1 −1


 .

Hint: One eigenvalue is -2.

28. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix U and a diagonal matrix D such that UTAU = D.

A =




17 −7 −4
−7 17 −4
−4 −4 14


 .

Hint: Two eigenvalues are 18 and 24.

29. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix U and a diagonal matrix D such that UTAU = D.

A =




13 1 4
1 13 4
4 4 10


 .

Hint: Two eigenvalues are 12 and 18.

30. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix U and a diagonal matrix D such that UTAU = D.
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A =




− 5
3

1
15

√
6
√
5 8

15

√
5

1
15

√
6
√
5 − 14

5 − 1
15

√
6

8
15

√
5 − 1

15

√
6 7

15




Hint: The eigenvalues are −3,−2, 1.

31. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix U and a diagonal matrix D such that UTAU = D.

A =




3 0 0
0 3

2
1
2

0 1
2

3
2


 .

32. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix U and a diagonal matrix D such that UTAU = D.

A =




2 0 0
0 5 1
0 1 5


 .

33. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix U and a diagonal matrix D such that UTAU = D.

A =




4
3

1
3

√
3
√
2 1

3

√
2

1
3

√
3
√
2 1 − 1

3

√
3

1
3

√
2 − 1

3

√
3 5

3




Hint: The eigenvalues are 0, 2, 2 where 2 is listed twice because it is a root of multiplicity 2.

34. Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding
an orthogonal matrix U and a diagonal matrix D such that UTAU = D.

A =




1 1
6

√
3
√
2 1

6

√
3
√
6

1
6

√
3
√
2 3

2
1
12

√
2
√
6

1
6

√
3
√
6 1

12

√
2
√
6 1

2




Hint: The eigenvalues are 2, 1, 0.

35. Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix




1
3

1
6

√
3
√
2 − 7

18

√
3
√
6

1
6

√
3
√
2 3

2 − 1
12

√
2
√
6

− 7
18

√
3
√
6 − 1

12

√
2
√
6 − 5

6



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Hint: The eigenvalues are 1, 2,−2.

36. Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix




− 1
2 − 1

5

√
6
√
5 1

10

√
5

− 1
5

√
6
√
5 7

5 − 1
5

√
6

1
10

√
5 − 1

5

√
6 − 9

10




Hint: The eigenvalues are −1, 2,−1 where −1 is listed twice because it has multiplicity 2 as
a zero of the characteristic equation.

37. Explain why a matrix A is symmetric if and only if there exists an orthogonal matrix U such
that A = UTDU for D a diagonal matrix.

38. The proof of Theorem 13.3.3 concluded with the following observation. If −ta + t2b ≥ 0 for
all t ∈ R and b ≥ 0, then a = 0. Why is this so?

39. Using Schur’s theorem, show that whenever A is an n× n matrix, det (A) equals the product
of the eigenvalues of A.

40. In the proof of Theorem 13.3.7 the following argument was used. If x ·w = 0 for all w ∈ Rn,
then x = 0. Why is this so?

41. Using Corollary 13.3.8 show that a real m×n matrix is onto if and only if its transpose is one
to one.

42. Suppose A is a 3× 2 matrix. Is it possible that AT is one to one? What does this say about
A being onto? Prove your answer.

43. Find the least squares solution to the following system.

x+ 2y = 1
2x+ 3y = 2
3x+ 5y = 4

44. You are doing experiments and have obtained the ordered pairs,

(0, 1) , (1, 2) , (2, 3.5) , (3, 4)

Find m and b such that y = mx + b approximates these four points as well as possible. Now
do the same thing for y = ax2 + bx+ c, finding a, b, and c to give the best approximation.

45. Suppose you have several ordered triples, (xi, yi, zi) . Describe how to find a polynomial,

z = a+ bx+ cy + dxy + ex2 + fy2

for example giving the best fit to the given ordered triples. Is there any reason you have to
use a polynomial? Would similar approaches work for other combinations of functions just as
well?

46. Find an orthonormal basis for the spans of the following sets of vectors.

(a) (3,−4, 0) , (7,−1, 0) , (1, 7, 1).
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(b) (3, 0,−4) , (11, 0, 2) , (1, 1, 7)

(c) (3, 0,−4) , (5, 0, 10) , (−7, 1, 1)

47. Using the Gram Schmidt process or the QR factorization, find an orthonormal basis for the
span of the vectors, (1, 2, 1) , (2,−1, 3) , and (1, 0, 0) .

48. Using the Gram Schmidt process or the QR factorization, find an orthonormal basis for the
span of the vectors, (1, 2, 1, 0) , (2,−1, 3, 1) , and (1, 0, 0, 1) .

49. The set, V ≡ {(x, y, z) : 2x+ 3y − z = 0} is a subspace of R3. Find an orthonormal basis for
this subspace.

50. The two level surfaces, 2x+ 3y − z + w = 0 and 3x − y + z + 2w = 0 intersect in a subspace
of R4, find a basis for this subspace. Next find an orthonormal basis for this subspace.

51. Let A,B be a m× n matrices. Define an inner product on the set of m× n matrices by

(A,B)F ≡ trace (AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an n× n
matrix, trace (M) ≡∑n

i=1Mii. The resulting norm, ||·||F is called the Frobenius norm and it
can be used to measure the distance between two matrices.

52. Let A be an m× n matrix. Show

||A||2F ≡ (A,A)F =
∑

j

σ2
j

where the σj are the singular values of A.

53. The trace of an n×n matrixM is defined as
∑

iMii. In other words it is the sum of the entries
on the main diagonal. If A,B are n×n matrices, show trace (AB) = trace (BA). Now explain
why if A = S−1BS it follows trace (A) = trace (B). Hint: For the first part, write these in
terms of components of the matrices and it just falls out.

54. Using Problem 53 and Schur’s theorem, show that the trace of an n×n matrix equals the sum
of the eigenvalues.

55. If A is a general n× n matrix having possibly repeated eigenvalues, show there is a sequence
{Ak} of n× n matrices having distinct eigenvalues which has the property that the ijth entry
of Ak converges to the ijth entry of A for all ij. Hint: Use Schur’s theorem.

56. Prove the Cayley Hamilton theorem as follows. First suppose A has a basis of eigenvectors
{vk}nk=1 , Avk = λkvk. Let p (λ) be the characteristic polynomial. Show p (A)vk = p (λk)vk =
0. Then since {vk} is a basis, it follows p (A)x = 0 for all x and so p (A) = 0. Next in the
general case, use Problem 55 to obtain a sequence {Ak} of matrices whose entries converge
to the entries of A such that Ak has n distinct eigenvalues and therefore by Theorem 12.1.13
Ak has a basis of eigenvectors. Therefore, from the first part and for pk (λ) the characteristic
polynomial for Ak, it follows pk (Ak) = 0. Now explain why and the sense in which

lim
k→∞

pk (Ak) = p (A) .

57. Show that the Moore Penrose inverse A+ satisfies the following conditions.

AA+A = A, A+AA+ = A+, A+A, AA+ are Hermitian.

Next show that if A0 satisfies the above conditions, then it must be the Moore Penrose inverse
and that if A is an n × n invertible matrix, then A−1 satisfies the above conditions. Thus

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



13.8. EXERCISES 283

the Moore Penrose inverse generalizes the usual notion of inverse but does not contradict it.
Hint: Let

U∗AV = Σ ≡
(
σ 0
0 0

)

and suppose

V +A0U =

(
P Q
R S

)

where P is the same size as σ. Now use the conditions to identify P = σ,Q = 0 etc.

58. Find the least squares solution to




1 1
1 1
1 1 + ε



(
x
y

)
=




a
b
c




Next suppose ε is so small that all ε2 terms are ignored by the computer but the terms of
order ε are not ignored. Show the least squares equations in this case reduce to

(
3 3 + ε

3 + ε 3 + 2ε

)(
x
y

)
=

(
a+ b+ c

a+ b+ (1 + ε) c

)
.

Find the solution to this and compare the y values of the two solutions. Show that one of these
is −2 times the other. This illustrates a problem with the technique for finding least squares
solutions presented as the solutions to A∗Ax = A∗y. One way of dealing with this problem
is to use the QR factorization. This is illustrated in the next problem. It turns out that this
helps alleviate some of the round off difficulties of the above.

59. Show that the equations A∗Ax = A∗y can be written as R∗Rx = R∗Q∗y where R is upper
triangular and R∗ is lower triangular. Explain how to solve this system efficiently. Hint: You
first find Rx and then you find x which will not be hard because R is upper triangular.

60. Show that A+ = (A∗A)+A∗. Hint: You might use the description of A+ in terms of the
singular value decomposition.
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Numerical Methods For Solving

Linear Systems

14.1 Iterative Methods For Linear Systems

Consider the problem of solving the equation

Ax = b (14.1)

where A is an n × n matrix. In many applications, the matrix A is huge and composed mainly of
zeros. For such matrices, the method of Gauss elimination (row operations) is not a good way to
solve the system because the row operations can destroy the zeros and storing all those zeros takes
a lot of room in a computer. These systems are called sparse. To solve them it is common to use
an iterative technique. The idea is to obtain a sequence of approximate solutions which get close to
the true solution after a sufficient number of iterations.

Definition 14.1.1 Let {xk}∞k=1 be a sequence of vectors in Fn. Say

xk =
(
xk1 , · · · , xkn

)
.

Then this sequence is said to converge to the vector x =(x1, · · · , xn) ∈ Fn, written as

lim
k→∞

xk = x

if for each j = 1, 2, · · · , n,
lim
k→∞

xkj = xj .

In words, the sequence converges if the entries of the vectors in the sequence converge to the corre-
sponding entries of x.

Example 14.1.2 Consider xk =
(
sin (1/k) , k2

1+k2 , ln
(

1+k2

k2

))
. Find limk→∞ xk.

From the above definition, this limit is the vector (0, 1, 0) because

lim
k→∞

sin (1/k) = 0, lim
k→∞

k2

1 + k2
= 1, and lim

k→∞
ln

(
1 + k2

k2

)
= 0.

A more complete mathematical explanation is given in Linear Algebra. Linear Algebra

285
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14.1.1 The Jacobi Method

The first technique to be discussed here is the Jacobi method which is described in the following
definition. In this technique, you have a sequence of vectors,

{
xk
}
which converge to the solution to

the linear system of equations and to get the ith component of the xk+1, you use all the components
of xk except for the ith. The precise description follows.

Definition 14.1.3 The Jacobi iterative technique, also called the method of simultaneous cor-

rections, is defined as follows. Let x1 be an initial vector, say the zero vector or some other vector.
The method generates a succession of vectors, x2,x3,x4, · · · and hopefully this sequence of vectors
will converge to the solution to (14.1). The vectors in this list are called iterates and they are
obtained according to the following procedure. Letting A = (aij) ,

aiix
r+1
i = −

∑

j ̸=i

aijx
r
j + bi. (14.2)

In terms of matrices, letting

A =




a11 · · · a1n
...

. . .
...

an1 · · · ann




The iterates are defined as




a11 0 · · · 0

0 a22
. . .

...
...

. . .
. . . 0

0 · · · 0 ann







xr+1
1

xr+1
2
...

xr+1
n




= −




0 a12 · · · a1n

a21 0
. . .

...
...

. . .
. . . an−1n

an1 · · · ann−1 0







xr1
xr2
...
xrn


+




b1
b2
...
bn


 (14.3)

The matrix on the left in (14.3) is obtained by retaining the main diagonal of A and setting every
other entry equal to zero. The matrix on the right in (14.3) is obtained from A by setting every
diagonal entry equal to zero and retaining all the other entries unchanged.

Example 14.1.4 Use the Jacobi method to solve the system




3 1 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1
x2
x3
x4


 =




1
2
3
4




In terms of the matrices, the Jacobi iteration is of the form




3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







xr1
xr2
xr3
xr4


+




1
2
3
4


 .

Now iterate this starting with
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x1 ≡




0
0
0
0


 .




3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







x21
x22
x23
x24


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







0
0
0
0


+




1
2
3
4


 =




1.0
2.0
3.0
4.0




Solving this system yields

x2 =




x21
x22
x23
x24


 =




. 333 333 33
. 5
. 6
1.0




Then you use x2 to find x3 =
(
x31 x32 x33 x34

)T




3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







x31
x32
x33
x34


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







. 333 333 33
. 5
. 6
1.0


+




1
2
3
4




=




. 5
1. 066 666 7

1.0
2. 8




The solution is

x3 =




x31
x32
x33
x34


 =




. 166 666 67

. 266 666 68
. 2
. 7




Now use this as the new data to find x4 =
(
x41 x42 x43 x44

)T




3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







x41
x42
x43
x44


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







. 166 666 67

. 266 666 68
. 2
. 7


+




1
2
3
4




=




. 733 333 32
1. 633 333 3
1. 766 666 6

3. 6


 .

Thus you find

x4 =




. 244 444 44

. 408 333 33

. 353 333 32
. 9




Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



288 NUMERICAL METHODS FOR SOLVING LINEAR SYSTEMS

Then another iteration for x5 gives




3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







x51
x52
x53
x54


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







. 244 444 44

. 408 333 33

. 353 333 32
. 9


+




1
2
3
4




=




. 591 666 67
1. 402 222 2
1. 283 333 3
3. 293 333 4




and so

x5 =




. 197 222 22

. 350 555 55

. 256 666 66

. 823 333 35


 .

The solution to the system of equations obtained by row operations is




x1
x2
x3
x4


 =




. 206

. 379

. 275

. 862




so already after only five iterations the iterates are pretty close to the true solution. How well does
it work? 



3 1 0 0
1 4 1 0
0 2 5 1
0 0 2 4







. 197 222 22

. 350 555 55

. 256 666 66

. 823 333 35


 =




. 942 222 21
1. 856 111 1
2. 807 777 8
3. 806 666 7


 ≈




1
2
3
4




A few more iterates will yield a better solution.

14.1.2 The Gauss Seidel Method

The Gauss Seidel method differs from the Jacobi method in using xk+1
j for all j < i in going from

xk to xk+1. This is why it is called the method of successive corrections. The precise description of
this method is in the following definition.

Definition 14.1.5 The Gauss Seidel method, also called the method of successive corrections

is given as follows. For A = (aij) , the iterates for the problem Ax = b are obtained according to the
formula

i∑

j=1

aijx
r+1
j = −

n∑

j=i+1

aijx
r
j + bi. (14.4)

In terms of matrices, letting

A =




a11 · · · a1n
...

. . .
...

an1 · · · ann



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The iterates are defined as



a11 0 · · · 0

a21 a22
. . .

...
...

. . .
. . . 0

an1 · · · ann−1 ann







xr+1
1

xr+1
2
...

xr+1
n




= −




0 a12 · · · a1n

0 0
. . .

...
...

. . .
. . . an−1n

0 · · · 0 0







xr1
xr2
...
xrn


+




b1
b2
...
bn


 (14.5)

In words, you set every entry in the original matrix which is strictly above the main diagonal
equal to zero to obtain the matrix on the left. To get the matrix on the right, you set every entry
of A which is on or below the main diagonal equal to zero. Using the iteration procedure of (14.4)
directly, the Gauss Seidel method makes use of the very latest information which is available at that
stage of the computation.

The following example is the same as the example used to illustrate the Jacobi method.

Example 14.1.6 Use the Gauss Seidel method to solve the system



3 1 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1
x2
x3
x4


 =




1
2
3
4




In terms of matrices, this procedure is



3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







xr1
xr2
xr3
xr4


+




1
2
3
4


 .

As before, let x1 be the zero vector. Thus the first iteration is to solve



3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







x21
x22
x23
x24


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







0
0
0
0


+




1
2
3
4


 =




1
2
3
4




Hence

x2 =




. 333 333 33

. 416 666 67

. 433 333 33

. 783 333 33




Thus x3 =
(
x31 x32 x33 x34

)T
is given by




3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







x31
x32
x33
x34


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







. 333 333 33

. 416 666 67

. 433 333 33

. 783 333 33


+




1
2
3
4




=




. 583 333 33
1. 566 666 7
2. 216 666 7

4.0



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And so

x3 =




. 194 444 44

. 343 055 56

. 306 111 11

. 846 944 44


 .

Another iteration for x4 involves solving



3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







x41
x42
x43
x44


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







. 194 444 44

. 343 055 56

. 306 111 11

. 846 944 44


+




1
2
3
4




=




. 656 944 44
1. 693 888 9
2. 153 055 6

4.0




and so

x4 =




. 218 981 48

. 368 726 86

. 283 120 38

. 858 439 81




Recall the answer is 


. 206

. 379

. 275

. 862




so the iterates are already pretty close to the answer. You could continue doing these iterates and
it appears they converge to the solution. Now consider the following example.

Example 14.1.7 Use the Gauss Seidel method to solve the system



1 4 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1
x2
x3
x4


 =




1
2
3
4




The exact solution is given by doing row operations on the augmented matrix. When this is done
the row echelon form is 



1 0 0 0 6
0 1 0 0 − 5

4

0 0 1 0 1
0 0 0 1 1

2




and so the solution is 


6
− 5

4

1
1
2


 =




6.0
−1. 25
1.0
. 5




The Gauss Seidel iterations are of the form



1 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 4 0 0
0 0 1 0
0 0 0 1
0 0 0 0







xr1
xr2
xr3
xr4


+




1
2
3
4



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and so, multiplying by the inverse of the matrix on the left, the iteration reduces to the following in
terms of matrix multiplication.

xr+1 = −




0 4 0 0
0 −1 1

4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10




xr +




1
1
4
1
2
3
4


 .

This time, we will pick an initial vector close to the answer. Let

x1 =




6
−1
1
1
2




This is very close to the answer. Now lets see what the Gauss Seidel iteration does to it.

x2 = −




0 4 0 0
0 −1 1

4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10







6
−1
1
1
2


+




1
1
4
1
2
3
4


 =




5.0
−1.0
. 9
. 55




You can’t expect to be real close after only one iteration. Lets do another.

x3 = −




0 4 0 0
0 −1 1

4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10







5.0
−1.0
. 9
. 55


+




1
1
4
1
2
3
4


 =




5.0
−. 975
. 88
. 56




x4 = −




0 4 0 0
0 −1 1

4 0

0 2
5 − 1

10
1
5

0 − 1
5

1
20 − 1

10







5.0
−. 975
. 88
. 56


+




1
1
4
1
2
3
4


 =




4. 9
−. 945
. 866
. 567




The iterates seem to be getting farther from the actual solution. Why is the process which worked so
well in the other examples not working here? A better question might be: Why does either process
ever work at all? A complete answer to this question is given in more advanced linear algebra books.
You can also see it in Linear Algebra.

Both iterative procedures for solving
Ax = b (14.6)

are of the form
Bxr+1 = −Cxr + b

where A = B + C. In the Jacobi procedure, the matrix C was obtained by setting the diagonal of
A equal to zero and leaving all other entries the same while the matrix B was obtained by making
every entry of A equal to zero other than the diagonal entries which are left unchanged. In the
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Gauss Seidel procedure, the matrix B was obtained from A by making every entry strictly above
the main diagonal equal to zero and leaving the others unchanged, and C was obtained from A by
making every entry on or below the main diagonal equal to zero and leaving the others unchanged.
Thus in the Jacobi procedure, B is a diagonal matrix while in the Gauss Seidel procedure, B is lower
triangular. Using matrices to explicitly solve for the iterates, yields

xr+1 = −B−1Cxr +B−1b. (14.7)

This is what you would never have the computer do, but this is what will allow the statement of a
theorem which gives the condition for convergence of these and all other similar methods.

Theorem 14.1.8 Let A = B + C and suppose all eigenvalues of B−1C have absolute value less
than 1 where A = B + C. Then the iterates in (14.7) converge to the unique solution of (14.6).

A complete explanation of this important result is found in more advanced linear algebra books.
You can also see it in Linear Algebra. It depends on a theorem of Gelfand which is completely
proved in this reference. Theorem 14.1.8 is very remarkable because it gives an algebraic condition
for convergence, which is essentially an analytical question.

14.2 The Operator Norm∗

Recall that for x ∈ Cn,
|x| ≡

√
⟨x,x⟩

Also recall Theorem 3.2.17 which says that

|z| ≥ 0 and |z| = 0 if and only if z = 0 (14.8)

If α is a scalar, |αz| = |α| |z| (14.9)

|z+w| ≤ |z|+ |w| . (14.10)

If you have the above axioms holding for ∥·∥ replacing |·| , then ∥·∥ is called a norm. For example,
you can easily verify that

∥x∥ ≡ max {|xi| , i = 1, · · · , n : x = (x1, · · · , xn)}

is a norm. However, there are many other norms.
One important observation is that x 7→∥x∥ is a continuous function. This follows from the obser-

vation that from the triangle inequality,

∥x− y∥+ ∥y∥ ≥ ∥x∥
∥x− y∥+ ∥x∥ = ∥y − x∥+ ∥x∥ ≥ ∥y∥

Hence

∥x∥ − ∥y∥ ≤ ∥x− y∥
∥y∥ − ∥x∥ ≤ ∥x− y∥

and so
|∥x∥ − ∥y∥| ≤ ∥x− y∥

This section will involve some analysis. If you want to talk about norms, this is inevitable. It
will need some of the theorems of calculus which are usually neglected. In particular, it needs the
following result which is a case of the Heine Borel theorem. To see this proved, see any good calculus
book.
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Theorem 14.2.1 Let S denote the points x ∈ Fn such that |x| = 1. Then if {xk}∞k=1 is any sequence
of points of S, there exists a subsequence which converges to a point of S.

Definition 14.2.2 Let A be an m × n matrix. Let ∥·∥k denote a norm on Ck. Then the operator
norm is defined as follows.

∥A∥ ≡ max {∥Ax∥m : ∥x∥n ≤ 1}

Lemma 14.2.3 The operator norm is well defined and is in fact a norm on the vector space of
m× n matrices.

Proof: It has already been observed that the m × n matrices form a vector space starting on
Page 78. Why is ∥A∥ <∞?

claim: There exists c > 0 such that whenever ∥x∥ ≤ 1, it follows that |x| ≤ c.
Proof of the claim: If not, then there exists {xk} such that ∥xk∥ ≤ 1 but |xk| > k for

k = 1, 2, · · · . Then |xk/ |xk|| = 1 and so by the Heine Borel theorem from calculus, there exists a
further subsequence, still denoted by k such that

∣∣∣∣
xk

|xk|
− y

∣∣∣∣→ 0, |y| = 1.

Letting

xk

|xk|
=

n∑

i=1

aki ei, y =

n∑

i=1

aiei,

It follows that ak → a in Fn. Hence
∥∥∥∥
xk

|xk|
− y

∥∥∥∥ ≤
n∑

i=1

∣∣aki − ai
∣∣ ∥ei∥

which converges to 0. However, ∥∥∥∥
xk

|xk|

∥∥∥∥ ≤ 1

k

and so, by continuity of ∥·∥ mentioned above,

∥y∥ = lim
k→∞

∥∥∥∥
xk

|xk|

∥∥∥∥ = 0

Therefore, y = 0 but also |y| = 1, a contradiction. This proves the claim.
Now consider why ∥A∥ <∞. Let c be as just described in the claim.

sup {∥Ax∥m : ∥x∥n ≤ 1} ≤ sup {∥Ax∥m : |x| ≤ c}

Consider for x,y with |x| , |y| ≤ c

∥Ax−Ay∥ =

∥∥∥∥∥
∑

i

Aij (xj − yj) ei

∥∥∥∥∥

≤
∑

i

|Aij | |xj − yj | ∥ei∥ ≤ C |x− y|

for some constant C. So x 7→ Ax is continuous. Since the norm ∥·∥m is continuous also, it follows
from the extreme value theorem of calculus that ∥Ax∥m achieves its maximum on the compact set
{x : |x| ≤ c} . Thus ∥A∥ is well defined. The only other issue of significance is the triangle inequality.
However,

∥A+B∥ ≡ max {∥(A+B)x∥m : ∥x∥n ≤ 1}
≤ max {∥Ax∥m + ∥Bx∥m : ∥x∥n ≤ 1}
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≤ max {∥Ax∥m : ∥x∥n ≤ 1}+max {∥Bx∥m : ∥x∥n ≤ 1}
= ∥A∥+ ∥B∥

Obviously ∥A∥ = 0 if and only if A = 0. The rule for scalars is also immediate. �
The operator norm is one way to describe the magnitude of a matrix. Earlier the Frobenius

norm was discussed. The Frobenius norm is actually not used as much as the operator norm. Recall
that the Frobenius norm involved considering the m × n matrix as a vector in Fmn and using the
usual Euclidean norm. It can be shown that it really doesn’t matter which norm you use in terms
of estimates because they are all equivalent. This is discussed in Problem 25 below for those who
have had a legitimate calculus course, not just the usual undergraduate offering.

14.3 The Condition Number∗

Let A be an m× n matrix and consider the problem Ax = b where it is assumed there is a unique
solution to this problem. How does the solution change if A is changed a little bit and if b is changed
a little bit? This is clearly an interesting question because you often do not know A and b exactly.
If a small change in these quantities results in a large change in the solution x, then it seems clear
this would be undesirable. In what follows ||·|| when applied to a matrix will always refer to the
operator norm.

Lemma 14.3.1 Let A,B be m× n matrices. Then for ||·|| denoting the operator norm,

||AB|| ≤ ||A|| ||B|| .

Proof: This follows from the definition. Letting ||x|| ≤ 1, it follows from the definition of the
operator norm that

||ABx|| ≤ ||A|| ||Bx|| ≤ ||A|| ||B|| ||x|| ≤ ||A|| ||B||
and so

||AB|| ≡ sup
||x||≤1

||ABx|| ≤ ||A|| ||B|| . �

Lemma 14.3.2 Let A,B be m× n matrices such that A−1 exists, and suppose ||B|| < 1/
∣∣∣∣A−1

∣∣∣∣ .
Then (A+B)

−1
exists and

∣∣∣
∣∣∣(A+B)

−1
∣∣∣
∣∣∣ ≤

∣∣∣∣A−1
∣∣∣∣
∣∣∣∣

1

1− ||A−1B||

∣∣∣∣ .

The above formula makes sense because
∣∣∣∣A−1B

∣∣∣∣ < 1.

Proof: By Lemma 14.3.1,

∣∣∣∣A−1B
∣∣∣∣ ≤

∣∣∣∣A−1
∣∣∣∣ ||B|| <

∣∣∣∣A−1
∣∣∣∣ 1

||A−1|| = 1

Suppose (A+B)x = 0. Then 0 = A
(
I +A−1B

)
x and so since A is one to one,

(
I +A−1B

)
x =

0. Therefore,

0 =
∣∣∣∣(I +A−1B

)
x
∣∣∣∣ ≥ ||x|| −

∣∣∣∣A−1Bx
∣∣∣∣

≥ ||x|| −
∣∣∣∣A−1B

∣∣∣∣ ||x|| =
(
1−

∣∣∣∣A−1B
∣∣∣∣) ||x|| > 0

a contradiction. This also shows
(
I +A−1B

)
is one to one. Therefore, both (A+B)

−1
and(

I +A−1B
)−1

exist. Hence

(A+B)
−1

=
(
A
(
I +A−1B

))−1
=
(
I +A−1B

)−1
A−1
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Now if
x =

(
I +A−1B

)−1
y

for ||y|| ≤ 1, then (
I +A−1B

)
x = y

and so
||x||

(
1−

∣∣∣∣A−1B
∣∣∣∣) ≤

∣∣∣∣x+A−1Bx
∣∣∣∣ ≤ ||y|| = 1

and so

||x|| =
∣∣∣
∣∣∣
(
I +A−1B

)−1
y
∣∣∣
∣∣∣ ≤ 1

1− ||A−1B||
Since ||y|| ≤ 1 is arbitrary, this shows

∣∣∣
∣∣∣
(
I +A−1B

)−1
∣∣∣
∣∣∣ ≤ 1

1− ||A−1B||

Therefore,

∣∣∣
∣∣∣(A+B)

−1
∣∣∣
∣∣∣ =

∣∣∣
∣∣∣
(
I +A−1B

)−1
A−1

∣∣∣
∣∣∣

≤
∣∣∣∣A−1

∣∣∣∣
∣∣∣
∣∣∣
(
I +A−1B

)−1
∣∣∣
∣∣∣ ≤

∣∣∣∣A−1
∣∣∣∣ 1

1− ||A−1B|| �

Proposition 14.3.3 Suppose A is invertible, b ̸= 0, Ax = b, and A1x1 = b1 where ||A−A1|| <
1/
∣∣∣∣A−1

∣∣∣∣. Then

||x1 − x||
||x|| ≤ 1

(1− ||A−1 (A1 −A)||) ||A||
∣∣∣∣A−1

∣∣∣∣
( ||A1 −A||

||A|| +
||b− b1||

||b||

)
. (14.11)

Proof: It follows from the assumptions that

Ax−A1x+A1x−A1x1 = b− b1.

Hence
A1 (x− x1) = (A1 −A)x+ b− b1.

Now A1 = (A+ (A1 −A)) and so by the above lemma, A−1
1 exists and so

(x− x1) = A−1
1 (A1 −A)x+A−1

1 (b− b1)

= (A+ (A1 −A))
−1

(A1 −A)x+ (A+ (A1 −A))
−1

(b− b1) .

By the estimate in Lemma 14.3.2,

||x− x1|| ≤
∣∣∣∣A−1

∣∣∣∣
1− ||A−1 (A1 −A)|| (||A1 −A|| ||x||+ ||b− b1||) .

Dividing by ||x|| ,

||x− x1||
||x|| ≤

∣∣∣∣A−1
∣∣∣∣

1− ||A−1 (A1 −A)||

(
||A1 −A||+ ||b− b1||

||x||

)
(14.12)

Now b = Ax = A
(
A−1b

)
and so ||b|| ≤ ||A||

∣∣∣∣A−1b
∣∣∣∣ and so

||x|| =
∣∣∣∣A−1b

∣∣∣∣ ≥ ||b|| / ||A|| .
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Therefore, from (14.12),

||x− x1||
||x|| ≤

∣∣∣∣A−1
∣∣∣∣

1− ||A−1 (A1 −A)||

( ||A|| ||A1 −A||
||A|| +

||A|| ||b− b1||
||b||

)

≤
∣∣∣∣A−1

∣∣∣∣ ||A||
1− ||A−1 (A1 −A)||

( ||A1 −A||
||A|| +

||b− b1||
||b||

)
�

This shows that the number,
∣∣∣∣A−1

∣∣∣∣ ||A|| , controls how sensitive the relative change in the
solution of Ax = b is to small changes in A and b. This number is called the condition number. It
is bad when it is large because a small relative change in b, for example, could yield a large relative
change in x.

14.4 Exercises

1. Solve the system 


4 1 1
1 5 2
0 2 6






x
y
z


 =




2
1
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.

2. Solve the system 


4 1 1
1 7 2
0 2 4






x
y
z


 =




1
2
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.

3. Solve the system 


5 1 1
1 7 2
0 2 4






x
y
z


 =




3
0
1




using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.

4. Solve the system 


7 1 0
1 5 2
0 2 6






x
y
z


 =




1
1
−1




using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.

5. Solve the system 


5 0 1
1 7 1
0 2 4






x
y
z


 =




1
7
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.
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6. Solve the system 


5 0 1
1 7 1
0 2 9






x
y
z


 =




1
1
0




using the Gauss Seidel method and the Jacobi method. Check your answer by also solving it
using row operations.

7. If you are considering a system of the form Ax = b and A−1 does not exist, will either the
Gauss Seidel or Jacobi methods work? Explain. What does this indicate about using either of
these methods for finding eigenvectors for a given eigenvalue?

8. Verify that
∥x∥∞ ≡ max {|xi| , i = 1, · · · , n : x = (x1, · · · , xn)}

is a norm. Next verify that

∥x∥1 ≡
n∑

i=1

|xi| , x = (x1, · · · , xn)

is also a norm on Fn.

9. Let A be an n×n matrix. Denote by ∥A∥2 the operator norm taken with respect to the usual
norm on Fn. Show that

∥A∥2 = σ1

where σ1 is the largest singular value. Next explain why
∥∥A−1

∥∥
2
= 1/σn where σn is the

smallest singular value of A. Explain why the condition number reduces to σ1/σn if the

operator norm is defined in terms of the usual norm, |x| =
(∑n

j=1 |xj |
2
)1/2

.

10. Let p, q > 1 and 1/p+ 1/q = 1. Consider the following picture.

b

a

x

t

x = tp−1

t = xq−1

Using elementary calculus, verify that for a, b > 0,

ap

p
+
bq

q
≥ ab.

11. ↑For p > 1, the p norm on Fn is defined by

∥x∥p ≡
(

n∑

k=1

|xk|p
)1/p

In fact, this is a norm and this will be shown in this and the next problem. Using the above
problem in the context stated there where p, q > 1 and 1/p+1/q = 1, verify Holder’s inequality

n∑

k=1

|xk| |yk| ≤ ∥x∥p ∥y∥q

Hint: You ought to consider the following.

n∑

k=1

|xk|
∥x∥p

|yk|
∥y∥q

Now use the result of the above problem.
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12. ↑ Now for p > 1, verify that ∥x+ y∥p ≤ ∥x∥p+∥y∥p . Then verify the other axioms of a norm.
This will give an infinite collection of norms for Fn. Hint: You might do the following.

∥x+ y∥pp ≤
n∑

k=1

|xk + yk|p−1
(|xk|+ |yk|)

=

n∑

k=1

|xk + yk|p−1 |xk|+
n∑

k=1

|xk + yk|p−1 |yk|

Now explain why p− 1 = p/q and use the Holder inequality.

13. This problem will reveal the best kept secret in undergraduate mathematics, the definition of
the derivative of a function of n variables. Let ∥·∥ be a norm on Fn and also denote by ∥·∥ a
norm on Fm. If you like, just use the standard norm on both Fn and Fm. It can be shown that
this doesn’t matter at all (See Problem 25 on 368.) but to avoid possible confusion, you can
be specific about the norm. A set U ⊆ Fn is said to be open if for every x ∈ U, there exists
some rx > 0 such that B (x, rx) ⊆ U where

B (x, r) ≡ {y ∈ Fn : ∥y − x∥ < r}

This just says that if U contains a point x then it contains all the other points sufficiently near
to x. Let f : U 7→ Fm be a function defined on U having values in Fm. Then f is differentiable
at x ∈ U means that there exists an m× n matrix A such that for every ε > 0, there exists a
δ > 0 such that whenever 0 < |v| < δ, it follows that

∥f (x+ v)− f (x)−Av∥
∥v∥ < ε

Stated more simply,

lim
∥v∥→0

∥f (x+ v)− f (x)−Av∥
∥v∥ = 0

Show that A is unique and verify that the ith column of A is

∂f

∂xi
(x)

so in particular, all partial derivatives exist. This unique m×n matrix is called the derivative
of f . It is written as Df (x) = A.
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Numerical Methods For Solving

The Eigenvalue Problem

15.1 The Power Method For Eigenvalues

This chapter presents some simple ways to find eigenvalues and eigenvectors. It is only an intro-
duction to this important subject. However, I hope to convey some of the ideas which are used.
As indicated earlier, the eigenvalue eigenvector problem is extremely difficult. Consider for example
what happens if you find an eigenvalue approximately. Then you can’t find an approximate eigen-
vector by the straight forward approach because A−λI is invertible whenever λ is not exactly equal
to an eigenvalue.

The power method allows you to approximate the largest eigenvalue and also the eigenvector
which goes with it. By considering the inverse of the matrix, you can also find the smallest eigenvalue.
The method works in the situation of a nondefective matrix A which has a real eigenvalue of algebraic
multiplicity 1, λn which has the property that |λk| < |λn| for all k ̸= n. Such an eigenvalue is called
a dominant eigenvalue.

Let {x1, · · · ,xn} be a basis of eigenvectors for Fn such that Axn = λnxn. Now let u1 be some
nonzero vector. Since {x1, · · · ,xn} is a basis, there exists unique scalars, ci such that

u1 =

n∑

k=1

ckxk.

Assume you have not been so unlucky as to pick u1 in such a way that cn = 0. Then let Auk = uk+1

so that

um = Amu1 =
n−1∑

k=1

ckλ
m
k xk + λmn cnxn. (15.1)

For large m the last term, λmn cnxn, determines quite well the direction of the vector on the right.

This is because |λn| is larger than |λk| for k < n and so for a large m, the sum,
∑n−1

k=1 ckλ
m
k xk, on

the right is fairly insignificant. Therefore, for large m, um is essentially a multiple of the eigenvector
xn, the one which goes with λn. The only problem is that there is no control of the size of the
vectors um. You can fix this by scaling. Let S2 denote the entry of Au1 which is largest in absolute
value. We call this a scaling factor. Then u2 will not be just Au1 but Au1/S2. Next let S3 denote
the entry of Au2 which has largest absolute value and define u3 ≡ Au2/S3. Continue this way.
The scaling just described does not destroy the relative insignificance of the term involving a sum
in (15.1). Indeed it amounts to nothing more than changing the units of length. Also note that
from this scaling procedure, the absolute value of the largest element of uk is always equal to 1.
Therefore, for large m,

um =
λmn cnxn

S2S3 · · ·Sm
+ (relatively insignificant term) .

299
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Therefore, the entry of Aum which has the largest absolute value is essentially equal to the entry
having largest absolute value of

A

(
λmn cnxn

S2S3 · · ·Sm

)
=

λm+1
n cnxn

S2S3 · · ·Sm
≈ λnum

and so for large m, it must be the case that λn ≈ Sm+1. This suggests the following procedure.
Finding the largest eigenvalue with its eigenvector.

1. Start with a vector u1 which you hope has a component in the direction of xn. The vector
(1, · · · , 1)T is usually a pretty good choice.

2. If uk is known,

uk+1 =
Auk

Sk+1

where Sk+1 is the entry of Auk which has largest absolute value.

3. When the scaling factors, Sk are not changing much, Sk+1 will be close to the eigenvalue and
uk+1 will be close to an eigenvector.

4. Check your answer to see if it worked well.

In finding an initial vector, it is clear that if you start with a vector which isn’t too far from an
eigenvector, the process will work faster. Also, the computer is able to raise the matrix to a power
quite easily. You might start with Apx for large p. As explained above, this will point in roughly
the right direction. Then normalize it by dividing by the largest entry and use the resulting vector
as your initial approximation. This ought to be close to an eigenvector and so the process would be
expected to converge rapidly for this as an initial choice.

Example 15.1.1 Find the largest eigenvalue of A =




5 −14 11
−4 4 −4
3 6 −3


 .

◮

I will use the above suggestion.




5 −14 11
−4 4 −4
3 6 −3




15


1
1
1


 =




1. 027 1× 1016

−5. 135 7× 1015

4. 701 8× 1011




Now divide by the largest entry to get the initial approximation for an eigenvector



1. 027 1× 1016

−5. 135 7× 1015

4. 701 8× 1011


 1

1. 027 1× 1016
=




1.0
−0.500 02

4. 577 7× 10−5


 = u1

The power method will now be applied to find the largest eigenvalue for the above matrix
beginning with this vector.




5 −14 11
−4 4 −4
3 6 −3






1.0
−0.500 02

4. 577 7× 10−5


 =




12. 001
−6. 000 3

−2. 573 3× 10−4


 .

Scaling this vector by dividing by the largest entry gives



12. 001
−6. 000 3

−2. 573 3× 10−4


 1

12.001
=




1.0
−0.499 98

−2. 144 2× 10−5


 ≡ u2
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Now lets do it again.




5 −14 11
−4 4 −4
3 6 −3






1.0
−0.499 98

−2. 144 2× 10−5


 =




11. 999
−5. 999 8

1. 843 3× 10−4




The new scaling factor is very close to the one just encountered. Therefore, it seems this is a
good place to stop. The eigenvalue is approximately 11. 999 and the eigenvector is close to the one
obtained above. How well does it work? With the above equation, consider

11. 999




1.0
−0.499 98

−2. 144 2× 10−5


 =




11. 999
−5. 999 3

−2. 572 8× 10−4




These are clearly very close so this is a good approximation. In fact, the exact eigenvalue is 12 and
an eigenvector is 


1.0
−0.5
0




15.2 The Shifted Inverse Power Method

This method can find various eigenvalues and eigenvectors. It is a significant generalization of the
above simple procedure and yields very good results. The situation is this: You have a number α
which is close to λ, some eigenvalue of an n × n matrix A. You don’t know λ but you know that
α is closer to λ than to any other eigenvalue. Your problem is to find both λ and an eigenvector
which goes with λ. Another way to look at this is to start with α and seek the eigenvalue λ, which
is closest to α along with an eigenvector associated with λ. If α is an eigenvalue of A, then you have
what you want. Therefore, we will always assume α is not an eigenvalue of A and so (A− αI)

−1

exists. When using this method it is nice to choose α fairly close to an eigenvalue. Otherwise, the
method will converge slowly. In order to get some idea where to start, you could use Gerschgorin’s
theorem to get a rough idea where to look. The method is based on the following lemma.

Lemma 15.2.1 Let {λk}nk=1 be the eigenvalues of A,α not an eigenvalue. Then xk is an eigenvector

of A for the eigenvalue λk, if and only if xk is an eigenvector for (A− αI)
−1

corresponding to the
eigenvalue 1

λk−α .

Proof: Let λk and xk be as described in the statement of the lemma. Then

(A− αI)xk = (λk − α)xk

if and only if
1

λk − α
xk = (A− αI)

−1
xk. �

In explaining why the method works, we will assume A is nondefective. This is not necessary!

One can use Gelfand’s theorem on the spectral radius which is presented in [11] and invariance of

(A− αI)
−1

on generalized eigenspaces to prove more general results. It suffices to assume that the
eigenspace for λk has dimension equal to the multiplicity of the eigenvalue λk but even this is not
necessary to obtain convergence of the method. This method is better than might be supposed from
the following explanation.
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Pick u1, an initial vector and let Axk = λkxk, where {x1, · · · ,xn} is a basis of eigenvectors
which exists from the assumption that A is nondefective. Assume α is closer to λn than to any other
eigenvalue. Since A is nondefective, there exist constants, ak such that

u1 =
n∑

k=1

akxk.

Possibly λn is a repeated eigenvalue. Then combining the terms in the sum which involve eigenvectors
for λn, a simpler description of u1 is

u1 =
m∑

j=1

ajxj + y

where y is an eigenvector for λn which is assumed not equal to 0. (If you are unlucky in your choice
for u1, this might not happen and things won’t work.) Now the iteration procedure is defined as

uk+1 ≡ (A− αI)
−1

uk

Sk+1

where Sk+1 is the element of (A− αI)
−1

uk which has largest absolute value. From Lemma 15.2.1,

uk+1 =

∑m
j=1 aj

(
1

λj−α

)k
xj +

(
1

λn−α

)k
y

S2 · · ·Sk+1

=

(
1

λn−α

)k

S2 · · ·Sk+1




m∑

j=1

aj

(
λn − α

λj − α

)k

xj + y


 .

Now it is being assumed that λn is the eigenvalue which is closest to α and so for large k, the term,

m∑

j=1

aj

(
λn − α

λj − α

)k

xj ≡ Ek

is very small, while for every k ≥ 1, uk is a moderate sized vector because every entry has absolute
value less than or equal to 1. Thus

uk+1 =

(
1

λn−α

)k

S2 · · ·Sk+1
(Ek + y) ≡ Ck (Ek + y)

where Ek → 0, y is some eigenvector for λn, and Ck is of moderate size, remaining bounded as
k → ∞. Therefore, for large k,

uk+1 − Cky = CkEk≈ 0

and multiplying by (A− αI)
−1

yields

(A− αI)
−1

uk+1 − (A− αI)
−1
Cky = (A− αI)

−1
uk+1 − Ck

(
1

λn − α

)
y

≈ (A− αI)
−1

uk+1 −
(

1

λn − α

)
uk+1≈ 0.

Therefore, for large k, uk is approximately equal to an eigenvector of (A− αI)
−1

. Therefore,

(A− αI)
−1

uk ≈ 1

λn − α
uk
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and so you could take the dot product of both sides with uk and approximate λn by solving the
following for λn.

(A− αI)
−1

uk · uk

|uk|2
=

1

λn − α

How else can you find the eigenvalue from this? Suppose uk = (w1, · · · , wn)
T

and from the
construction |wi| ≤ 1 and wk = 1 for some k. Then

Sk+1uk+1 = (A− αI)
−1

uk ≈ (A− αI)
−1

(Ck−1y)=
1

λn − α
(Ck−1y) ≈

1

λn − α
uk.

Hence the entry of (A− αI)
−1

uk which has largest absolute value is approximately 1
λn−α and so it

is likely that you can estimate λn using the formula

Sk+1 =
1

λn − α
.

Of course this would fail if (A− αI)
−1

uk had consistently more than one entry having equal absolute
value, but this is unlikely.

Here is how you use the shifted inverse power method to find the eigenvalue and

eigenvector closest to α.

1. Find (A− αI)
−1
.

2. Pick u1. It is important that u1 =
∑m

j=1 ajxj + y where y is an eigenvector which goes with
the eigenvalue closest to α and the sum is in an “invariant subspace corresponding to the other
eigenvalues”. Of course you have no way of knowing whether this is so but it typically is so. If
things don’t work out, just start with a different u1. You were phenomenally unlucky in your
choice.

3. If uk has been obtained,

uk+1 =
(A− αI)

−1
uk

Sk+1

where Sk+1 is the element of (A− αI)
−1

uk which has largest absolute value.

4. When the scaling factors, Sk+1 are not changing much and the uk are not changing much, find
the approximation to the eigenvalue by solving

Sk+1 =
1

λ− α

for λ. The eigenvector is approximated by uk+1.

5. Check your work by multiplying by the original matrix to see how well what you have found
works.

Also note that this is just the power method applied to (A− λI)
−1
. The eigenvalue you want is

the one which makes 1
λ−α as large as possible for all λ ∈ σ (A). This is because making λ− α small

is the same as making (λ− α)
−1

large.

Example 15.2.2 Find the eigenvalue of A =




5 −14 11
−4 4 −4
3 6 −3


 which is closest to −7. Also

find an eigenvector which goes with this eigenvalue.
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In this case the eigenvalues are −6, 0, and 12 so the correct answer is −6 for the eigenvalue.






5 −14 11
−4 4 −4
3 6 −3


+ 7




1 0 0
0 1 0
0 0 1






−1

=




0.511 28 0.917 29 −0.488 72
3. 007 5× 10−2 0.112 78 3. 007 5× 10−2

−0.428 57 −0.857 14 0.571 43




To get a good initial vector, follow the shortcut described earlier which works for the power method.




0.511 28 0.917 29 −0.488 72
3. 007 5× 10−2 0.112 78 3. 007 5× 10−2

−0.428 57 −0.857 14 0.571 43




23


1
1
1




=




0.999 99
4. 871 3× 10−20

−0.999 99




That middle term looks a lot like 0 so for an initial guess I will simply take it equal to 0. Also the
other term is very close to 1. Therefore, I will take it to equal 1. Then




0.511 28 0.917 29 −0.488 72
3. 007 5× 10−2 0.112 78 3. 007 5× 10−2

−0.428 57 −0.857 14 0.571 43






1
0
−1




=




1.0
0

−1.0




It looks like we have found an eigenvector for (A+ 7I)
−1
. Then to find the eigenvalue desired, solve

1

λ+ 7
= 1

This yields λ = −6 which is actually the exact eigenvalue closest to −7.

Example 15.2.3 Consider the symmetric matrix A =




1 2 3
2 1 4
3 4 2


 . Find the middle eigenvalue

and an eigenvector which goes with it.

Since A is symmetric, it follows it has three real eigenvalues which are solutions to

p (λ) = det


λ




1 0 0
0 1 0
0 0 1


−




1 2 3
2 1 4
3 4 2






= λ3 − 4λ2 − 24λ− 17 = 0

If you use your graphing calculator to graph this polynomial, you find there is an eigenvalue some-
where between −.9 and −.8 and that this is the middle eigenvalue. Of course you could zoom in
and find it very accurately without much trouble but what about the eigenvector which goes with
it? If you try to solve


(−.8)




1 0 0
0 1 0
0 0 1


−




1 2 3
2 1 4
3 4 2








x
y
z


 =




0
0
0



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there will be only the zero solution because the matrix on the left will be invertible and the same
will be true if you replace −.8 with a better approximation like −.86 or −.855. This is because all
these are only approximations to the eigenvalue and so the matrix in the above is nonsingular for
all of these. Therefore, you will only get the zero solution and

Eigenvectors are never equal to zero!

However, there exists such an eigenvector and you can find it using the shifted inverse power method.
Pick α = −.855. Then






1 2 3
2 1 4
3 4 2


+ .855




1 0 0
0 1 0
0 0 1






−1

=




−367. 5 215. 96 83. 601
215. 96 −127. 17 −48. 753
83. 601 −48. 753 −19. 191




Next use the power method for this matrix.




−367. 5 215. 96 83. 601
215. 96 −127. 17 −48. 753
83. 601 −48. 753 −19. 191




13


1
1
1


 =




−2. 282 2× 1034

1. 341 5× 1034

5. 183 7× 1033




Now divide by the largest entry to get a good first approximation to the eigenvector.



−2. 282 2× 1034

1. 341 5× 1034

5. 183 7× 1033


 1

−2. 282 2× 1034
=




1.0
−0.587 81
−0.227 14







−367. 5 215. 96 83. 601
215. 96 −127. 17 −48. 753
83. 601 −48. 753 −19. 191






1.0
−0.587 81
−0.227 14


 =




−513. 43
301. 79
116. 62




Now divide by the largest entry to get the next approximation



−513. 43
301. 79
116. 62


 1

−513. 43
=




1.0
−0.587 79
−0.227 14




Clearly this vector has not changed much and so the next scaling factor will be very close to the one
just considered. Hence the eigenvalue will be determined by solving

1

λ+ .855
= −513. 43

It follows the approximate eigenvalue is about

λ = −0.856 95

The approximate eigenvector is 


1.0
−0.587 81
−0.227 14




How well does it work?



1 2 3
2 1 4
3 4 2






1.0
−0.587 81
−0.227 14


 =




−0.857 04
0.503 63
0.194 48



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−0.856 95




1.0
−0.587 81
−0.227 14


 =




−0.856 95
0.503 72
0.194 65




This is pretty close. If you wanted to get closer, you could simply do more iterations. For practical
purposes, the eigenvalue and eigenvector have been obtained.

Example 15.2.4 Find the eigenvalues and eigenvectors of the matrix

A =




2 1 3
2 1 1
3 2 1


 .

This is only a 3×3 matrix and so it is not hard to estimate the eigenvalues. Just get the
characteristic equation, graph it using a calculator and zoom in to find the eigenvalues. If you do
this, you find there is an eigenvalue near −1.2, one near −.4, and one near 5.5. (The characteristic
equation is 2 + 8λ+ 4λ2 − λ3 = 0.) Of course we have no idea what the eigenvectors are.

Lets first try to find the eigenvector and a better approximation for the eigenvalue near −1.2. In
this case, let α = −1.2. Then

(A− αI)
−1

=




−25. 357 143 −33. 928 571 50.0
12. 5 17. 5 −25.0

23. 214 286 30. 357 143 −45.0


 .

Then



−25. 357 143 −33. 928 571 50.0
12. 5 17. 5 −25.0

23. 214 286 30. 357 143 −45.0




17


1
1
1




=




−4. 943 2× 1028

2. 431 2× 1028

4. 492 8× 1028




The initial approximation for an eigenvector will then be the above divided by its largest entry.



−4. 943 2× 1028

2. 431 2× 1028

4. 492 8× 1028


 1

−4. 943 2× 1028
=




1.0
−0.491 83
−0.908 88




Next 


−25. 357 143 −33. 928 571 50.0
12. 5 17. 5 −25.0

23. 214 286 30. 357 143 −45.0






1.0
−0.491 83
−0.908 88


 =




−54. 114
26. 615
49. 183




Normalizing this, the next approximation is



−54. 114
26. 615
49. 183


 1

−54. 114
=




1.0
−0.491 83
−0.908 88




which is essentially the same vector. Hence this vector is the approximate eigenvector and to find
the eigenvalue you solve

1

λ+ 1.2
= −54. 114

Thus the eigenvalue is λ = −1. 218 5. How well does it work?



2 1 3
2 1 1
3 2 1






1.0
−0.491 83
−0.908 88


 =




−1. 218 5
0.599 29
1. 107 5



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while

−1. 218 5




1.0
−0.491 83
−0.908 88


 =




−1. 218 5
0.599 29
1. 107 5


 .

For practical purposes, this has found the eigenvalue near −1.2 as well as an eigenvector associated
with it.

Next we shall find the eigenvector and a more precise value for the eigenvalue near −.4. In this
case,

(A− αI)
−1

=




8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5


 .

The first approximation to an eigenvector can be obtained as before.




8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5




17


1
1
1




=




−1. 853 5× 1016

2. 372 4× 1016

6. 287 4× 1015




The first choice for an approximate eigenvector is




−1. 853 5× 1016

2. 372 4× 1016

6. 287 4× 1015


 1

2. 372 4× 1016
=




−0.781 28
1.0

0.265 02




Now




8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5






−0.781 28
1.0

0.265 02




=




−7. 627 4
9. 762 5
2. 587 3




Hence the next approximate eigenvector is




−7. 627 4
9. 762 5
2. 587 3


 1

9. 762 5
=




−0.781 30
1.0

0.265 02




This is pretty close to the same vector and so the next scaling factor will be essentially the same
as the one just used. Thus the above vector is a good approximate eigenvector and an approximate
eigenvalue is obtained by solving

1

λ+ .4
= 9. 762 5

Hence λ = −0.297 57. How well does it work?



2 1 3
2 1 1
3 2 1






−0.781 30
1.0

0.265 02


 =




0.232 46
−0.297 58
−0.078 88


 .
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−0.297 57




−0.781 30
1.0

0.265 02


 =




0.232 49
−0.297 57

−7. 886 2× 10−2


 .

It works pretty well. For practical purposes, the eigenvalue and eigenvector have now been found.
If you want better accuracy, you could just continue iterating.

Next we will find the eigenvalue and eigenvector for the eigenvalue near 5.5. In this case,

(A− αI)
−1

=




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0


 .

As before, I have no idea what the eigenvector is but to avoid giving the impression that you always
need to start with the vector (1, 1, 1)

T
, let u1 = (1, 2, 3)

T
. What follows is the iteration without all

the comments between steps.




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0






1
2
3


 =




1. 324× 102

86. 4
1. 26× 102


 .

S1 = 86. 4.

u2 =




1. 532 407 4
1.0

1. 458 333 3


 .




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0






1. 532 407 4
1.0

1. 458 333 3


 =




95. 379 629
62. 388 888
90. 990 74




S2 = 95. 379 629.

u3 =




1. 0
. 654 111 25
. 953 985 05







29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0






1. 0
. 654 111 25
. 953 985 05


 =




62. 321 522
40. 764 974
59. 453 451




S3 = 62. 321 522.

u4 =




1.0
. 654 107 48
. 953 979 45







29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0






1.0
. 654 107 48
. 953 979 45


 =




62. 321 329
40. 764 848
59. 453 268




S4 = 62. 321 329. Looks like it is time to stop because this scaling factor is not changing much from
S3.

u5 =




1.0
. 654 107 49
. 953 979 46


 .

Then the approximation of the eigenvalue is gotten by solving

62. 321 329 =
1

λ− 5.5

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



15.2. THE SHIFTED INVERSE POWER METHOD 309

which gives λ = 5. 516 045 9. Lets see how well it works.




2 1 3
2 1 1
3 2 1






1.0
. 654 107 49
. 953 979 46


 =




5. 516 045 9
3. 608 087
5. 262 194 4




5. 516 045 9




1.0
. 654 107 49
. 953 979 46


 =




5. 516 045 9
3. 608 086 9
5. 262 194 5


 .

15.2.1 Complex Eigenvalues

What about complex eigenvalues? If your matrix is real, you won’t see these by graphing the char-
acteristic equation on your calculator. Will the shifted inverse power method find these eigenvalues
and their associated eigenvectors? The answer is yes. However, for a real matrix, you must pick α to
be complex. This is because the eigenvalues occur in conjugate pairs, so if you don’t pick it complex,
it will be the same distance between any conjugate pair of complex numbers and so nothing in the
above argument for convergence implies you will get convergence to a complex number. Also, the
process of iteration will yield only real vectors and scalars.

Example 15.2.5 Find the complex eigenvalues and corresponding eigenvectors for the matrix



5 −8 6
1 0 0
0 1 0


 .

Here the characteristic equation is λ3 − 5λ2 + 8λ− 6 = 0. One solution is λ = 3. The other two
are 1 + i and 1− i. Apply the process to α = i so we will find the eigenvalue closest to i.

(A− αI)
−1

=




−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i




I shall use the trick of raising to a high power to begin with.




−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i




15


1
1
1




=




−0.4 + 0.8i
0.2 + 0.6i
0.4 + 0.2i




Now normalize by dividing by the largest entry to get a good initial vector.



−0.4 + 0.8i
0.2 + 0.6i
0.4 + 0.2i


 1

−0.4 + 0.8i
=




1.0
0.5− 0.5i
−0.5i




Then



−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i






1.0
0.5− 0.5i
−0.5i


 =




1.0
0.5− 0.5i
−0.5i




It looks like this has found the eigenvector exactly. Then to get the eigenvalue, you need to solve

1

λ− i
= 1

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



310 NUMERICAL METHODS FOR SOLVING THE EIGENVALUE PROBLEM

Thus λ = 1 + i. How well does the above vector work?



5 −8 6
1 0 0
0 1 0






1.0
0.5− 0.5i
−0.5i


 =




1.0 + 1.0i
1.0

0.5− 0.5i




(1 + i)




1.0
0.5− 0.5i
−0.5i


 =




1.0 + 1.0i
1.0

0.5− 0.5i




It appears that this has found the exact answer.
This illustrates an interesting topic which leads to many related topics. If you have a polynomial,

x4 + ax3 + bx2 + cx + d, you can consider it as the characteristic polynomial of a certain matrix,
called a companion matrix. In this case,




−a −b −c −d
1 0 0 0
0 1 0 0
0 0 1 0


 .

The above example was just a companion matrix for λ3 − 5λ2 + 8λ − 6. You can see the pattern
which will enable you to obtain a companion matrix for any polynomial of the form λn + a1λ

n−1 +
· · ·+ an−1λ+ an. This illustrates that one way to find the complex zeros of a polynomial is to use
the shifted inverse power method on a companion matrix for the polynomial. Doubtless there are
better ways but this does illustrate how impressive this procedure is. Do you have a better way?

15.3 The Rayleigh Quotient

There are many specialized results concerning the eigenvalues and eigenvectors for Hermitian ma-
trices. A matrix A is Hermitian if A = A∗ where A∗ means to take the transpose of the conjugate
of A. In the case of a real matrix, Hermitian reduces to symmetric. Recall also that for x ∈ Fn,

|x|2 = x∗x =

n∑

j=1

|xj |2 .

The following corollary gives the theoretical foundation for the spectral theory of Hermitian
matrices. This is a corollary of a theorem which is proved Corollary 13.2.14 and Theorem 13.2.14
on Page 264.

Corollary 15.3.1 If A is Hermitian, then all the eigenvalues of A are real and there exists an
orthonormal basis of eigenvectors.

Thus for {xk}nk=1 this orthonormal basis,

x∗
ixj = δij ≡

{
1 if i = j
0 if i ̸= j

For x ∈ Fn, x ̸= 0, the Rayleigh quotient is defined by

x∗Ax

|x|2
.

Now let the eigenvalues of A be λ1 ≤ λ2 ≤ · · · ≤ λn and Axk = λkxk where {xk}nk=1 is the above
orthonormal basis of eigenvectors mentioned in the corollary. Then if x is an arbitrary vector, there
exist constants, ai such that

x =

n∑

i=1

aixi.
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Also,

|x|2 =

n∑

i=1

aix
∗
i

n∑

j=1

ajxj

=
∑

ij

aiajx
∗
ixj =

∑

ij

aiajδij =
n∑

i=1

|ai|2 .

Therefore,

x∗Ax

|x|2
=

(
∑n

i=1 aix
∗
i )
(∑n

j=1 ajλjxj

)

∑n
i=1 |ai|

2

=

∑
ij aiajλjx

∗
ixj

∑n
i=1 |ai|

2 =

∑
ij aiajλjδij∑n

i=1 |ai|
2

=

∑n
i=1 |ai|

2
λi∑n

i=1 |ai|
2 ∈ [λ1, λn] .

In other words, the Rayleigh quotient is always between the largest and the smallest eigenvalues of
A. When x = xn, the Rayleigh quotient equals the largest eigenvalue and when x = x1 the Rayleigh
quotient equals the smallest eigenvalue. Suppose you calculate a Rayleigh quotient. How close is it
to some eigenvalue?

Theorem 15.3.2 Let x ̸= 0 and form the Rayleigh quotient,

x∗Ax

|x|2
≡ q.

Then there exists an eigenvalue of A, denoted here by λq such that

|λq − q| ≤ |Ax− qx|
|x| . (15.2)

Proof: Let x =
∑n

k=1 akxk where {xk}nk=1 is the orthonormal basis of eigenvectors.

|Ax− qx|2 = (Ax− qx)
∗
(Ax− qx)

=

(
n∑

k=1

akλkxk − qakxk

)∗( n∑

k=1

akλkxk − qakxk

)

=




n∑

j=1

(λj − q) ajx
∗
j



(

n∑

k=1

(λk − q) akxk

)

=
∑

j,k

(λj − q) aj (λk − q) akx
∗
jxk

=
n∑

k=1

|ak|2 (λk − q)
2

Now pick the eigenvalue, λq which is closest to q. Then

|Ax− qx|2 =
n∑

k=1

|ak|2 (λk − q)
2 ≥ (λq − q)

2
n∑

k=1

|ak|2 = (λq − q)
2 |x|2

which implies (15.2). �
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Example 15.3.3 Consider the symmetric matrix A =




1 2 3
2 2 1
3 1 4


 . Let

x =(1, 1, 1)
T
.

How close is the Rayleigh quotient to some eigenvalue of A? Find the eigenvector and eigenvalue to
several decimal places.

Everything is real and so there is no need to worry about taking conjugates. Therefore, the
Rayleigh quotient is

(
1 1 1

)



1 2 3
2 2 1
3 1 4






1
1
1




3
=

19

3

According to the above theorem, there is some eigenvalue of this matrix, λq such that

∣∣∣∣λq −
19

3

∣∣∣∣ ≤

∣∣∣∣∣∣




1 2 3
2 2 1
3 1 4






1
1
1


− 19

3




1
1
1



∣∣∣∣∣∣

√
3

=
1√
3




− 1
3

− 4
3

5
3




=

√
1
9 +

(
4
3

)2
+
(
5
3

)2
√
3

= 1. 247 2

Could you find this eigenvalue and associated eigenvector? Of course you could. This is what
the inverse shifted power method is all about.

Solve 




1 2 3
2 2 1
3 1 4


− 19

3




1 0 0
0 1 0
0 0 1








x
y
z


 =




1
1
1




In other words solve 


− 16
3 2 3

2 − 13
3 1

3 1 − 7
3







x
y
z


 =




1
1
1




and divide by the entry which is largest, 3. 870 7, to get

u2 =




. 699 25

. 493 89
1.0




Now solve 


− 16
3 2 3

2 − 13
3 1

3 1 − 7
3







x
y
z


 =




. 699 25

. 493 89
1.0



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and divide by the entry with largest absolute value, 2. 997 9 to get

u3 =




. 714 73

. 522 63
1. 0




Now solve 


− 16
3 2 3

2 − 13
3 1

3 1 − 7
3







x
y
z


 =




. 714 73

. 522 63
1. 0




and divide by the entry with largest absolute value, 3. 045 4, to get

u4 =




. 713 7
. 520 56
1.0




Solve 


− 16
3 2 3

2 − 13
3 1

3 1 − 7
3







x
y
z


 =




. 713 7
. 520 56
1.0




and divide by the largest entry, 3. 042 1 to get

u5 =




. 713 78

. 520 73
1.0




You can see these scaling factors are not changing much. The predicted eigenvalue is obtained by
solving

1

λ− 19
3

= 3. 042 1

to obtain λ = 6. 6621. How close is this?



1 2 3
2 2 1
3 1 4






. 713 78

. 520 73
1.0


 =




4. 755 2
3. 469
6. 662 1




while

6. 662 1




. 713 78

. 520 73
1.0


 =




4. 755 3
3. 469 2
6. 662 1


 .

You see that for practical purposes, this has found the eigenvalue and an eigenvector.

15.4 The QR Algorithm

15.4.1 Basic Considerations

The QR algorithm is one of the most remarkable techniques for finding eigenvalues. In this section,
I will discuss this method. To see more on this algorithm, consult Golub and Van Loan [5]. For an
explanation of why the algorithm works see Wilkinson [16]. There is also more discussion in Linear
Algebra. This will only discuss real matrices for the sake of simplicity. Also, there is a lot more to
this algorithm than will be presented here. First here is an introductory lemma.
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Lemma 15.4.1 Suppose A is a block upper triangular matrix,

A =




B1 ∗
. . .

0 Br




This means that the Bi are ri × ri matrices whose diagonals are subsets of the main diagonal of A.
Then σ (A) = ∪r

i=1σ (Bi).

Proof: Say Q∗
iBiQi = Ti where Ti is upper triangular. Such unitary matrices exist by Schur’s

theorem. Then consider the similarity transformation,




Q∗
1 0

. . .

0 Q∗
r







B1 ∗
. . .

0 Br







Q1 0
. . .

0 Qr




By block multiplication this equals




Q∗
1 0

. . .

0 Q∗
r







B1Q1 ∗
. . .

0 BrQr




=




Q∗
1B1Q1 ∗

. . .

0 Q∗
rBrQr


 =




T1 ∗
. . .

0 Tr




Now this is a real upper triangular matrix and the eigenvalues of A consist of the union of the
eigenvalues of the Ti which is the same as the union of the eigenvalues of the Bi. �

Here is the description of the great and glorious QR algorithm.

The QR Algorithm

Let A be an n× n real matrix. Let A0 = A. Suppose that Ak−1 has been found. To find Ak let

Ak−1 = QkRk, Ak = RkQk,

where QkRk is a QR factorization of Ak−1. Thus R is upper triangular with nonnegative entries on
the main diagonal and Q is real and unitary (orthogonal).

The main significance of this algorithm is in the following easy but important theorem.

Theorem 15.4.2 Let A be any n × n complex matrix and let {Ak} be the sequence of matrices
described above by the QR algorithm. Then each of these matrices is unitarily similar to A.

Proof: Clearly A0 is orthogonally similar to A because they are the same thing. Suppose then
that

Ak−1 = Q∗AQ

Then from the algorithm,
Ak−1 = QkRk, Rk = Q∗

kAk−1

Therefore, from the algorithm,

Ak ≡ RkQk = Q∗
kAk−1Qk = Q∗

kQ
∗AQQk = (QQk)

∗
AQQk,

and so Ak is unitarily similar to A also. �
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Although the sequence {Ak} may fail to converge, it is nevertheless often the case that for large
k, Ak is of the form

Ak =




Bk ∗
. . .

e Br




where the Bi are blocks which run down the diagonal of the matrix, and all of the entries below
this block diagonal are very small. Then letting TB denote the matrix obtained by setting all of
these small entries equal to zero, one can argue, using methods of analysis, that the eigenvalues of
Ak are close to the eigenvalues of TB . From Lemma 15.4.1 the eigenvalues of TB are the eigenvalues
of the blocks Bi. Thus, the eigenvalues of A are the same as those of Ak and these are close to the
eigenvalues of TB .

In proving things about this algorithm and also for the sake of convenience, here is a technical
result.

Corollary 15.4.3 For Qk, Rk, Ak given in the QR algorithm,

A = Q1 · · ·QkAkQ
∗
k · · ·Q∗

1 (15.3)

For Q(k) ≡ Q1 · · ·Qk and R(k) ≡ Rk · · ·R1, it follows that

Ak = Q(k)R(k)

Here Ak is the usual thing, A raised to the kth power.

Proof: From the algorithm,

A = A0 = Q1R1, Q
∗
1A0 = R1, A1 ≡ R1Q1 = Q∗

1AQ1

Hence
Q1A1Q

∗
1 = A

Suppose the formula (15.3) holds for k. Then from the algorithm,

Ak = Qk+1Rk+1, Rk+1 = Q∗
k+1Ak, Ak+1 = Rk+1Qk+1 = Q∗

k+1AkQk+1

Hence Qk+1Ak+1Q
∗
k+1 = Ak and so

A = Q1 · · ·QkAkQ
∗
k · · ·Q∗

1 = Q1 · · ·QkQk+1Ak+1Q
∗
k+1Q

∗
k · · ·Q∗

1

This shows the first part.
The second part is clearly true from the algorithm if k = 1. Then from the first part and the

algorithm,

A = Q1 · · ·QkQk+1Ak+1Q
∗
k+1Q

∗
k · · ·Q∗

1 = Q1 · · ·QkQk+1Rk+1

I︷ ︸︸ ︷
Qk+1Q

∗
k+1Q

∗
k · · ·Q∗

1

It follows that

Ak+1 = AAk = Q1 · · ·QkQk+1Rk+1Q
∗
k · · ·Q∗

1Q
(k)R(k)

= Q(k+1)Rk+1

(
Q(k)

)∗
Q(k)R(k)

Hence
Ak+1 = Q(k+1)Rk+1R

(k) = Q(k+1)R(k+1)
�

Now suppose that A−1 exists. How do two QR factorizations compare? Since A−1 exists, it
would require that if A = QR, then R−1 must exist. Now an upper triangular matrix has inverse
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which is also upper triangular. This follows right away from the algorithm presented early in the
book for finding the inverse. If A = Q1R1 = Q2R2, then Q

∗
1Q2 = R1R

−1
2 and so R1R

−1
2 is an upper

triangular matrix which is also unitary and in addition has all positive entries down the diagonal.
For simplicity, call it R. Thus R is upper triangular and RR∗ = R∗R = I. It follows easily that R
must equal I and so R1 = R2 which requires Q1 = Q2.

Now in the above corollary, you know that

A = Q1 · · ·QkAkQ
∗
k · · ·Q∗

1 = Q(k)Ak

(
Q(k)

)∗

Also, from this corollary, you know that

Ak = Q(k)R(k)

You could also simply take the QR factorization of Ak to obtain Ak = QR. Then from what was
just pointed out, if A−1 exists,

Q(k) = Q

Thus from the above corollary,

Ak =
(
Q(k)

)∗
AQ(k) = Q∗AQ

Therefore, in using the QR algorithm in the case where A has an inverse, it suffices to take

Ak = QR

and then consider the matrix
Q∗AQ = Ak.

This is so theoretically. In practice it might not work out all that well because of round off errors.
There is also an interesting relation to the power method. Let

A =
(
a1 · · · an

)

Then from the way we multiply matrices,

Ak+1 =
(
Aka1 · · · Akan

)

and for large k, Akai would be expected to point roughly in the direction of the eigenvector corre-
sponding to the largest eigenvalue. Then if you form the QR factorization,

Ak+1 = QR

the columns of Q are an orthonormal basis obtained essentially from the Gram Schmidt procedure.
Thus the first column of Q has roughly the direction of an eigenvector associated with the largest
eigenvalue of A. It follows that the first column of Q∗AQ is approximately equal to λ1q1 and so the
top entry will be close to λ1q

∗
1q1 = λ1 and the entries below it are close to 0. Thus the eigenvalues

of the matrix should be close to this top entry of the first column along with the eigenvalues of the
(n− 1) × (n− 1) matrix in the lower right corner. If this is a 2 × 2 you can find the eigenvalues
using the quadratic formula. If it is larger, you could just use the same procedure for finding its
eigenvalues but now you are dealing with a smaller matrix.

Example 15.4.4 Find the eigenvalues of the matrix




5 4 3
2 3 2
−8 −9 −6



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First use the computer to raise this matrix to a large power.




5 4 3.0
2 3 2
−8 −9 −6




27

=




2. 684 4× 108 1. 342 2× 108 1. 342 2× 108

−2.0 −3.0 −2.0
−2. 684 4× 108 −1. 342 2× 108 −1. 342 2× 108




Now find the QR factorization of this last matrix. The Q equals




0.707 11 −3. 725 2× 10−9 −0.707 11
−5. 268 3× 10−9 −1. 000 0 1. 441 6× 10−21

−0.707 11 3. 725 2× 10−9 −0.707 11




Next examine 


0.707 11 −3. 725 2× 10−9 −0.707 11
−5. 268 3× 10−9 −1. 000 0 1. 441 6× 10−21

−0.707 11 3. 725 2× 10−9 −0.707 11




T

·




5 4 3.0
2 3 2
−8 −9 −6






0.707 11 −3. 725 2× 10−9 −0.707 11
−5. 268 3× 10−9 −1. 000 0 1. 441 6× 10−21

−0.707 11 3. 725 2× 10−9 −0.707 11


 =




2.0 −9. 192 4 −11.0
5. 268 4× 10−9 3.0 2. 828 4
−1. 862 6× 10−8 −3. 535 6 −3.0




You see now that this is essentially equal to the block upper triangular matrix




2.0 −9. 192 4 −11.0
0 3.0 2. 828 4
0 −3. 535 6 −3.0




and the eigenvalues of this matrix can be easily identified. They are 2 and the eigenvalues of the
block (

3.0 2. 828 4
−3. 535 6 −3.0

)

But these can be found easily using the quadratic formula. This yields i,−i. In fact the exact
eigenvalues for this matrix are 2, i,−i.

15.4.2 The Upper Hessenberg Form

Actually, when using the QR algorithm, contrary to what I have done above, you should always deal
with a matrix which is similar to the given matrix which is in upper Hessenberg form. This means
all the entries below the sub diagonal equal 0. Here is an easy lemma.

Lemma 15.4.5 Let A be an n × n matrix. Then it is unitarily similar to a matrix in upper Hes-
senberg form and this similarity can be computed.

Proof: Let A be an n× n matrix. Suppose n > 2. There is nothing to show otherwise.

A =

(
a b

d A1

)

where A1 is n− 1× n− 1. Consider the n− 1× 1 matrix d. Then let Q be a Householder reflection
such that

Qb =

(
c
0

)
≡ c
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Then (
1 0

0 Q

)(
a b

d A1

)(
1 0

0 Q∗

)

=

(
a bQ∗

c QA1Q
∗

)

By similar reasoning, there exists an n− 1× n− 1 matrix

U =

(
1 0

0 Q1

)

such that
(

1 0

0 Q1

)
QA1Q

∗
(

1 0

0 Q∗
1

)
=




∗ · · · ∗
∗ . . .

...
0 · · · ∗




Thus (
1 0

0 U

)(
a bQ∗

c QA1Q
∗

)(
1 0

0 U∗

)

will have all zeros below the first two entries on the sub diagonal. Continuing this way shows the
result. �

The reason you should use a matrix which is upper Hessenberg and similar to A in the QR
algorithm is that the algorithm keeps returning a matrix in upper Hessenberg form and if you are
looking for block upper triangular matrices, this will force the size of the blocks to be no larger than
2× 2 which are easy to handle using the quadratic formula. This is in the following lemma.

Lemma 15.4.6 Let {Ak} be the sequence of iterates from the QR algorithm, A−1 exists. Then if
Ak is upper Hessenberg, so is Ak+1.

Proof: The matrix is upper Hessenberg means that Aij = 0 whenever i− j ≥ 2.

Ak+1 = RkQk

where Ak = QkRk. Therefore AkR
−1
k = Qk and so

Ak+1 = RkQk = RkAkR
−1
k

Let the ijth entry of Ak be akij . Then if i− j ≥ 2

ak+1
ij =

n∑

p=i

j∑

q=1

ripa
k
pqr

−1
qj

It is given that akpq = 0 whenever p− q ≥ 2. However, from the above sum,

p− q ≥ i− j ≥ 2,

and so the sum equals 0. �

Example 15.4.7 Find the solutions to the equation x4 − 4x3 + 8x2 − 8x + 4 = 0 using the QR
algorithm.

This is the characteristic equation of the matrix



4 −8 8 −4
1 0 0 0
0 1 0 0
0 0 1 0



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Since the constant term in the equation is not 0, it follows that the matrix has an inverse. It is
already in upper Hessenberg form. Lets apply the algorithm.




4 −8 8 −4
1 0 0 0
0 1.0 0 0
0 0 1 0




55

=




−7. 516 2× 109 3. 033 3× 1010 −4. 509 7× 1010 3. 006 5× 1010

−7. 516 2× 109 2. 254 9× 1010 −2. 979 6× 1010 1. 503 2× 1010

−3. 758 1× 109 7. 516 2× 109 −7. 516 2× 109 2. 684 4× 108

−6. 710 9× 107 −3. 489 7× 109 6. 979 3× 109 −6. 979 3× 109




Then when you take the QR factorization of this, you find Q =

Q =




−0.666 65 0.605 55 −0.407 45 0.151 21
−0.666 65 −0.305 4 0.446 60 −0.512 69
−0.333 33 −0.592 53 −6. 411 2× 10−2 0.730 54

−5. 952 3× 10−3 −0.434 68 −0.793 99 −0.424 96




Then you look at

QT




4 −8 8 −4
1 0 0 0
0 1.0 0 0
0 0 1 0


Q

which yields 


0.652 78 −1. 540 9 1. 816 1 −8. 101 1
0.757 89 1. 382 3 −1. 650 1 7. 358 4

−9. 699× 10−6 1. 043 4× 10−3 0.875 04 −5. 471 1
1. 635 5× 10−5 7. 249 8× 10−5 0.178 40 1. 089 9




Of course the entries in the bottom left should all be 0. They aren’t because of round off error. The
only other entry of importance is 1. 043 4× 10−3 which is small. Hence the eigenvalues are close to
the eigenvalues of the two blocks

(
0.652 78 −1. 540 9
0.757 89 1. 382 3

)
,

(
0.875 04 −5. 471 1
0.178 40 1. 089 9

)

This yields

0.982 47 + 0.982 09i, 0.982 47− 0.982 09i

1. 017 5 + 1. 017 2i, 1. 017 5− 1. 017 2i

The real solutions are 1 + i, 1 + i, 1− i, and 1− i. You could of course use the shifted inverse power
method to get closer and to also obtain eigenvectors for the matrix.

Example 15.4.8 Find the eigenvalues for the symmetric matrix

A =




1 2 3 −1
2 0 1 3
3 1 3 2
−1 3 2 1




Also find an eigenvector.
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I should work with a matrix which is upper Hessenberg which is similar to the given matrix.
However, I don’t feel like it. It is easier to just raise to a power and see if things work. This is what
I will do.




1 2 3 −1
2 0 1 3
3 1 3 2
−1 3 2 1




35

=




1. 209 1× 1028 1. 118 8× 1028 1. 876 9× 1028 1. 045 8× 1028

1. 118 8× 1028 1. 035 3× 1028 1. 736 9× 1028 9. 677 4× 1027

1. 876 9× 1028 1. 736 9× 1028 2. 913 7× 1028 1. 623 5× 1028

1. 045 8× 1028 9. 677 4× 1027 1. 623 5× 1028 9. 045 5× 1027




Now take the QR factorization of this. When you do, Q =




0.446 59 −0.737 57 −0.435 04 0.259 39
0.413 24 −0.106 17 0.825 07 0.370 43
0.693 24 0.640 97 −0.312 12 0.105 57
0.386 27 −0.184 03 0.180 47 −0.885 64




Thus you look at QTAQ, a matrix which is similar to A and which equals




6. 642 9 1. 637 9× 10−4 1. 195 5× 10−4 1. 335 6× 10−4

1. 637 9× 10−4 −1. 475 1 −1. 134 9 −1. 637 5
1. 195 5× 10−4 −1. 134 9 0.203 11 −2. 507 7
1. 335 6× 10−4 −1. 637 5 −2. 507 7 −0.371 01




It follows that the eigenvalues are approximately 6. 642 9 and the eigenvalues of the 3× 3 matrix in
the lower right corner. I shall use the same technique to find its eigenvalues.

B37 =




−1. 475 1 −1. 134 9 −1. 637 5
−1. 134 9 0.203 11 −2. 507 7
−1. 637 5 −2. 507 7 −0.371 01




37

=




−1. 738 6× 1022 −1. 483 9× 1022 −1. 760 5× 1022

−1. 483 9× 1022 −1. 266 5× 1022 −1. 502 6× 1022

−1. 760 5× 1022 −1. 502 6× 1022 −1. 782 7× 1022




Then take the QR factorization of this to get Q =




−0.602 6 −6. 115 8× 10−2 0.795 69
−0.514 32 0.792 13 −0.328 63
−0.610 20 −0.607 28 −0.508 80




Then you look at QTBQ which equals




−4. 101 8 −3. 848 5× 10−5 2. 023 4× 10−5

−3. 848 5× 10−5 2. 386 1 0.416 67
2. 023 4× 10−5 0.416 67 7. 275 9× 10−2




Thus the eigenvalues are approximately 6. 642 9,−4. 101 8, and the eigenvalues of the matrix in the
lower right corner in the above. These are 2. 458 9,−1. 480 0×10−6. In fact, 0 is an eigenvalue of the
original matrix and it is being approximated by −1. 480 0×10−6. To summarize, the eigenvalues are
approximately

6. 642 9, −4. 101 8, 2. 458 9, 0
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Of course you could now use the shifted inverse power method to find these more exactly if
desired and also to find the eigenvectors.

If you wanted to find an eigenvector, you could start with one of these approximate eigenvalues
and use the shifted inverse power method to get an eigenvector. For example, pick 6. 642 9.







1 2 3 −1
2 0 1 3
3 1 3 2
−1 3 2 1


− 6. 642 9




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







−1

=




3189. 3 2951. 5 4951. 3 2758. 8
2951. 5 2731. 1 4581. 9 2552. 9
4951. 3 4581. 9 7686. 2 4282. 7
2758. 8 2552. 9 4282. 7 2386.0







3189. 3 2951. 5 4951. 3 2758. 8
2951. 5 2731. 1 4581. 9 2552. 9
4951. 3 4581. 9 7686. 2 4282. 7
2758. 8 2552. 9 4282. 7 2386.0




5


1
1
1
1




=




9. 061 9× 1020

8. 385 7× 1020

1. 406 8× 1021

7. 838 1× 1020




So try for the next approximation




9. 061 9× 1020

8. 385 7× 1020

1. 406 8× 1021

7. 838 1× 1020




1

1. 406 8× 1021
=




0.644 15
0.596 08

1.0
0.557 16







3189. 3 2951. 5 4951. 3 2758. 8
2951. 5 2731. 1 4581. 9 2552. 9
4951. 3 4581. 9 7686. 2 4282. 7
2758. 8 2552. 9 4282. 7 2386.0







0.644 15
0.596 08

1.0
0.557 16




=




10302.
9533. 4
15993.
8910. 9




Next one is

1

15993




10302.
9533. 4
15993.
8910. 9


 =




0.644 16
0.596 10

1.0
0.557 18




This isn’t changing by much from the above vector and so the scaling factor will be about 15993.
Now solve

1

λ− 6. 642 9
= 15993

The solution is 6. 643 0. The approximate eigenvector is what I just got. Lets check it.
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


1 2 3 −1
2 0 1 3
3 1 3 2
−1 3 2 1







0.644 16
0.596 10

1.0
0.557 18


 =




4. 279 2
3. 959 9
6. 642 9
3. 701 3




6. 643 0




0.644 16
0.596 10

1.0
0.557 18


 =




4. 279 2
3. 959 9
6. 643
3. 701 3




This is clearly very close. This has essentially found the eigenvalues and an eigenvector for the
largest eigenvalue.

15.5 Exercises

1. Using the power method, find the eigenvalue correct to one decimal place having largest abso-

lute value for the matrix A =




0 −4 −4
7 10 5
−2 0 6


 along with an eigenvector associated with

this eigenvalue.

2. Using the power method, find the eigenvalue correct to one decimal place having largest abso-

lute value for the matrix A =




15 6 1
−5 2 1
1 2 7


 along with an eigenvector associated with this

eigenvalue.

3. Using the power method, find the eigenvalue correct to one decimal place having largest ab-

solute value for the matrix A =




10 4 2
−3 2 −1
0 0 4


 along with an eigenvector associated with

this eigenvalue.

4. Using the power method, find the eigenvalue correct to one decimal place having largest abso-

lute value for the matrix A =




15 14 −3
−13 −18 9
5 10 −1


 along with an eigenvector associated with

this eigenvalue.

5. In Example 15.3.3 an eigenvalue was found correct to several decimal places along with an
eigenvector. Find the other eigenvalues along with their eigenvectors.

6. Find the eigenvalues and eigenvectors of the matrix A =




3 2 1
2 1 3
1 3 2


 numerically. In this

case the exact eigenvalues are ±
√
3, 6. Compare with the exact answers.

7. Find the eigenvalues and eigenvectors of the matrix A =




3 2 1
2 5 3
1 3 2


 numerically. The exact

eigenvalues are 2, 4 +
√
15, 4−

√
15. Compare your numerical results with the exact values. Is

it much fun to compute the exact eigenvectors?
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8. Find the eigenvalues and eigenvectors of the matrix A =




0 2 1
2 5 3
1 3 2


 numerically. We don’t

know the exact eigenvalues in this case. Check your answers by multiplying your numerically
computed eigenvectors by the matrix.

9. Find the eigenvalues and eigenvectors of the matrix A =




0 2 1
2 0 3
1 3 2


 numerically. We don’t

know the exact eigenvalues in this case. Check your answers by multiplying your numerically
computed eigenvectors by the matrix.

10. Consider the matrix A =




3 2 3
2 1 4
3 4 0


 and the vector (1, 1, 1)

T
. Estimate the distance be-

tween the Rayleigh quotient determined by this vector and some eigenvalue of A.

11. Consider the matrix A =




1 2 1
2 1 4
1 4 5


 and the vector (1, 1, 1)

T
. Estimate the distance be-

tween the Rayleigh quotient determined by this vector and some eigenvalue of A.

12. Using Gerschgorin’s theorem, find upper and lower bounds for the eigenvalues of

A =




3 2 3
2 6 4
3 4 −3


 .

13. The QR algorithm works very well on general matrices. Try the QR algorithm on the following
matrix which happens to have some complex eigenvalues.

A =




1 2 3
1 2 −1
−1 −1 1




Use the QR algorithm to get approximate eigenvalues and then use the shifted inverse power
method on one of these to get an approximate eigenvector for one of the complex eigenvalues.

14. Use the QR algorithm to approximate the eigenvalues of the symmetric matrix




1 2 3
2 −8 1
3 1 0




15. Try to find the eigenvalues of the matrix




3 3 1
−2 −2 −1
0 1 0


 using the QR algorithm. It has

eigenvalues 1, i,−i. You will see the algorithm won’t work well. ◮

16. Let q (λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + λn. Now consider the companion matrix,

C ≡




0 · · · 0 −a0
1 0 −a1

. . .
. . .

...
0 1 −an−1



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Show that q (λ) is the characteristic equation for C. Thus the roots of q (λ) are the eigenvalues
of C. You can prove something similar for

C =




−an−1 −an−2 · · · −a0
1

. . .

1




Hint: The characteristic equation is

det




λ · · · 0 a0
−1 λ a1

. . .
. . .

...
0 −1 λ+ an−1




Expand along the first column. Thus

λ

∣∣∣∣∣∣∣∣∣

λ · · · 0 a1
−1 λ a2

. . .
. . .

...
0 −1 λ+ an−1

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

0 0 · · · a0
−1 λ · · · a2
...

. . .
...

0 −1 λ+ a3

∣∣∣∣∣∣∣∣∣

Now use induction on the first term and for the second, note that you can expand along the
top row to get

(−1)
n−2

a0 (−1)
n
= a0.

17. Suppose A is a real symmetric, invertible, matrix, or more generally one which has real eigen-
values. Then as described above, it is typically the case that

Ap = Q1R

and

QT
1 AQ1 =

(
a1 bT

1

eT1 A1

)

where e is very small. Then you can do the same thing with A1 to obtain another smaller
orthogonal matrix Q2 such that

QT
2 A1Q2 =

(
a2 bT

2

eT2 A2

)

Explain why

(
1 0T

0 Q2

)T

QT
1 AQ1

(
1 0T

0 Q2

)
=




a1 ∗
... a2
eT1 eT2 A3




where the ei are very small. Explain why one can construct an orthogonal matrix Q such that

QTAQ = (T + E)

where T is an upper triangular matrix and E is very small. In case A is symmetric, explain
why T is actually a diagonal matrix. Next explain why, in the case of A symmetric, that the
columns of Q are an orthonormal basis of vectors, each of which is close to an eigenvector.
Thus this will compute, not just the eigenvalues but also the eigenvectors.

18. Explain how one could use the QR algorithm or the above procedure to compute the singular
value decomposition of an arbitrary real m × n matrix. In fact, there are other algorithms
which will work better.
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Vector Spaces

16.1 Algebraic Considerations

16.1.1 The Definition

It is time to consider the idea of an abstract Vector space.

Definition 16.1.1 A vector space is an Abelian group of “vectors” denoted here by bold face letters,
satisfying the axioms of an Abelian group,

v +w = w + v,

the commutative law of addition,

(v +w) + z = v + (w + z) ,

the associative law for addition,
v + 0 = v,

the existence of an additive identity,
v + (−v) = 0,

the existence of an additive inverse, along with a field of “scalars” F which are allowed to multiply
the vectors according to the following rules. (The Greek letters denote scalars.)

α (v +w) = αv + αv, (16.1)

(α+ β)v = αv + βv, (16.2)

α (βv) = αβ (v) , (16.3)

1v = v. (16.4)

The field of scalars is usually R or C and the vector space will be called real or complex depending
on whether the field is R or C. However, other fields are also possible. For example, one could use
the field of rational numbers or even the field of the integers mod p for p a prime. A vector space is
also called a linear space.

For example, Rn with the usual conventions is an example of a real vector space and Cn is an
example of a complex vector space. Up to now, the discussion has been for Rn or Cn and all that is
taking place is an increase in generality and abstraction. We no longer know what the vectors are.
We also have no idea what field is being considered, at least in the next section.

If you are interested in considering other fields, you should have some examples other than
C,R,Q. Some of these are discussed in the following exercises. If you are happy with only considering
R and C, skip these exercises.

325
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16.2 Exercises

1. Prove the Euclidean algorithm: If m,n are positive integers, then there exist integers q, r ≥ 0
such that r < m and

n = qm+ r

Hint: You might try considering

S ≡ {n− km : k ∈ N and n− km < 0}

and picking the smallest integer in S or something like this.

2. ↑The greatest common divisor of two positive integers m,n, denoted as q is a positive number
which divides both m and n and if p is any other positive number which divides both m,n,
then p divides q. Recall what it means for p to divide q. It means that q = pk for some integer
k. Show that the greatest common divisor of m,n is the smallest positive integer in the set S

S ≡ {xm+ yn : x, y ∈ Z and xm+ yn > 0}

Two positive integers are called relatively prime if their greatest common divisor is 1.

3. ↑A positive integer larger than 1 is called a prime number if the only positive numbers which
divide it are 1 and itself. Thus 2,3,5,7, etc. are prime numbers. If m is a positive integer and
p does not divide m where p is a prime number, show that p and m are relatively prime.

4. ↑There are lots of fields. This will give an example of a finite field. Let Z denote the set of
integers. Thus Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }. Also let p be a prime number. We will say
that two integers, a, b are equivalent and write a ∼ b if a − b is divisible by p. Thus they are
equivalent if a − b = px for some integer x. First show that a ∼ a. Next show that if a ∼ b
then b ∼ a. Finally show that if a ∼ b and b ∼ c then a ∼ c. For a an integer, denote by [a] the
set of all integers which is equivalent to a, the equivalence class of a. Show first that is suffices
to consider only [a] for a = 0, 1, 2, · · · , p− 1 and that for 0 ≤ a < b ≤ p− 1, [a] ̸= [b]. That is,
[a] = [r] where r ∈ {0, 1, 2, · · · , p− 1}. Thus there are exactly p of these equivalence classes.
Hint: Recall the Euclidean algorithm. For a > 0, a = mp + r where r < p. Next define the
following operations.

[a] + [b] ≡ [a+ b]

[a] [b] ≡ [ab]

Show these operations are well defined. That is, if [a] = [a′] and [b] = [b′] , then [a] + [b] =
[a′] + [b′] with a similar conclusion holding for multiplication. Thus for addition you need to
verify [a+ b] = [a′ + b′] and for multiplication you need to verify [ab] = [a′b′]. For example,
if p = 5 you have [3] = [8] and [2] = [7] . Is [2× 3] = [8× 7]? Is [2 + 3] = [8 + 7]? Clearly so
in this example because when you subtract, the result is divisible by 5. So why is this so in
general? Now verify that {[0] , [1] , · · · , [p− 1]} with these operations is a Field. This is called
the integers modulo a prime and is written Zp. Since there are infinitely many primes p, it
follows there are infinitely many of these finite fields. Hint: Most of the axioms are easy once
you have shown the operations are well defined. The only two which are tricky are the ones
which give the existence of the additive inverse and the multiplicative inverse. Of these, the
first is not hard. − [x] = [−x]. Since p is prime, there exist integers x, y such that 1 = px+ ky
and so 1− ky = px which says 1 ∼ ky and so [1] = [ky] . Now you finish the argument. What
is the multiplicative identity in this collection of equivalence classes?
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16.2.1 Linear Independence And Bases

Just as in the case of Fn one has a concept of subspace, linear independence, and bases.

Definition 16.2.1 If {v1, · · · ,vn} ⊆ V, a vector space, then

span (v1, · · · ,vn) ≡
{

n∑

i=1

αivi : αi ∈ F

}
.

A subset, W ⊆ V is said to be a subspace if it is also a vector space with the same field of scalars.
Thus W ⊆ V is a subspace if ax + by ∈ W whenever a, b ∈ F and x,y ∈ W. The span of a set of
vectors as just described is an example of a subspace.

Definition 16.2.2 If {v1, · · · ,vn} ⊆ V, the set of vectors is linearly independent if

n∑

i=1

αivi = 0

implies
α1 = · · · = αn = 0

and {v1, · · · ,vn} is called a basis for V if

span (v1, · · · ,vn) = V

and {v1, · · · ,vn} is linearly independent. The set of vectors is linearly dependent if it is not linearly
independent.

The next theorem is called the exchange theorem. It is very important that you understand this
theorem. There are two kinds of people who go further in linear algebra, those who understand
this theorem and its corollary presented later and those who don’t. Those who do understand these
theorems are able to proceed and learn more linear algebra while those who don’t are doomed to
wander in the wilderness of confusion and sink into the swamp of despair. Therefore, I am giving
multiple proofs. Try to understand at least one of them. Several amount to the same thing, just
worded differently. Before giving the proof, here is some important notation.

Notation 16.2.3 Let wij ∈ V, a vector space and let 1 ≤ i ≤ r while 1 ≤ j ≤ s. Thus these vectors
can be listed in a rectangular array.

w11 w12 · · · w1s

w21 w22 · · · w2s

...
...

...
wr1 wr2 · · · wrs

Then
∑s

j=1

∑r
i=1 wij means to sum the vectors in each column and then to add the s sums which

result while
∑r

i=1

∑s
j=1 wij means to sum the vectors in each row and then to add the r sums which

result. Either way you simply get the sum of all the vectors in the above array. This is because you
can add vectors in any order and you get the same answer.

Theorem 16.2.4 Let {x1, · · · ,xr} be a linearly independent set of vectors such that each xi is in
the span{y1, · · · ,ys} . Then r ≤ s.

Proof 1: Let

xk =
s∑

j=1

ajkyj
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If r > s, then the matrix A = (ajk) has more columns than rows. By Corollary 8.2.8 one of these
columns is a linear combination of the others. This implies there exist scalars c1, · · · , cr such that

r∑

k=1

ajkck = 0, j = 1, · · · , r

Then

r∑

k=1

ckxk =
r∑

k=1

ck

s∑

j=1

ajkyj =
s∑

j=1




=0︷ ︸︸ ︷
r∑

k=1

ckajk


yj = 0

which contradicts the assumption that {x1, · · · ,xr} is linearly independent. Hence r ≤ s. �

Proof 2: Define span(y1, · · · ,ys) ≡ V, it follows there exist scalars, c1, · · · , cs such that

x1 =
s∑

i=1

ciyi. (16.5)

Not all of these scalars can equal zero because if this were the case, it would follow that x1 = 0 and
so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1+

∑r
i=2 0xi = x1 = 0 and

so there would exist a nontrivial linear combination of the vectors {x1, · · · ,xr} which equals zero.
Say ck ̸= 0. Then solve ((16.5)) for yk and obtain

yk ∈ span


x1,

s-1 vectors here︷ ︸︸ ︷
y1, · · · ,yk−1,yk+1, · · · ,ys


 .

Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span (x1, z1, · · · , zs−1) = V because if v ∈ V, there exist constants c1, · · · , cs such that

v =
s−1∑

i=1

cizi + csyk.

Replace the yk in the above with a linear combination of the vectors,

{x1, z1, · · · , zs−1}

to obtain v ∈ span (x1, z1, · · · , zs−1) . The vector yk, in the list {y1, · · · ,ys} , has now been replaced
with the vector x1 and the resulting modified list of vectors has the same span as the original list of
vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span (x1, · · · ,xl, z1, · · · , zp) = V, where the vectors, z1, · · · , zp
are each taken from the set, {y1, · · · ,ys} and l + p = s. This has now been done for l = 1 above.
Then since r > s, it follows that l ≤ s < r and so l + 1 ≤ r. Therefore, xl+1 is a vector not in the
list, {x1, · · · ,xl} and since span (x1, · · · ,xl, z1, · · · , zp) = V there exist scalars, ci and dj such that

xl+1 =
l∑

i=1

cixi +

p∑

j=1

djzj . (16.6)

Not all the dj can equal zero because if this were so, it would follow that {x1, · · · ,xr} would be a
linearly dependent set because one of the vectors would equal a linear combination of the others.
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Therefore, ((16.6)) can be solved for one of the zi, say zk, in terms of xl+1 and the other zi and just
as in the above argument, replace that zi with xl+1 to obtain

span


x1, · · ·xl,xl+1,

p-1 vectors here︷ ︸︸ ︷
z1, · · · zk−1, zk+1, · · · , zp


 = V.

Continue this way, eventually obtaining

span (x1, · · · ,xs) = V.

But then xr ∈ span (x1, · · · ,xs) contrary to the assumption that {x1, · · · ,xr} is linearly indepen-
dent. Therefore, r ≤ s as claimed. �

Proof 3: Let V ≡ span (y1, · · · ,ys) and suppose r > s. Let Al ≡ {x1, · · · ,xl} , A0 = ∅, and let
Bs−l denote a subset of the vectors, {y1, · · · ,ys} which contains s− l vectors and has the property
that span (Al, Bs−l) = V. Note that the assumption of the theorem says span (A0, Bs) = V.

Now an exchange operation is given for span (Al, Bs−l) = V . Since r > s, it follows l < r. Letting

Bs−l ≡ {z1, · · · , zs−l} ⊆ {y1, · · · ,ys} ,

it follows there exist constants, ci and di such that

xl+1 =

l∑

i=1

cixi +

s−l∑

i=1

dizi,

and not all the di can equal zero. (If they were all equal to zero, it would follow that the set,
{x1, · · · ,xr} would be dependent since one of the vectors in it would be a linear combination of the
others.)

Let dk ̸= 0. Then zk can be solved for as follows.

zk =
1

dk
xl+1 −

l∑

i=1

ci
dk

xi −
∑

i ̸=k

di
dk

zi.

This implies V = span (Al+1, Bs−l−1), where Bs−l−1 ≡ Bs−l \ {zk} , a set obtained by deleting
zk from Bk−l. You see, the process exchanged a vector in Bs−l with one from {x1, · · · ,xr} and
kept the span the same. Starting with V = span (A0, Bs) , do the exchange operation until V =
span (As−1, z) where z ∈ {y1, · · · ,ys} . Then one more application of the exchange operation yields
V = span (As) . But this implies xr ∈ span (As) = span (x1, · · · ,xs) , contradicting the linear
independence of {x1, · · · ,xr} . It follows that r ≤ s as claimed. �

Proof 4: Suppose r > s. Let zk denote a vector of {y1, · · · ,ys} . Thus there exists j as small
as possible such that

span (y1, · · · ,ys) = span (x1, · · · ,xm, z1, · · · , zj)

where m + j = s. It is given that m = 0, corresponding to no vectors of {x1, · · · ,xm} and j = s,
corresponding to all the yk results in the above equation holding. If j > 0 then m < s and so

xm+1 =
m∑

k=1

akxk +

j∑

i=1

bizi

Not all the bi can equal 0 and so you can solve for one of them in terms of

xm+1,xm, · · · ,x1,
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and the other zk. Therefore, there exists

{z1, · · · , zj−1} ⊆ {y1, · · · ,ys}

such that
span (y1, · · · ,ys) = span (x1, · · · ,xm+1, z1, · · · , zj−1)

contradicting the choice of j. Hence j = 0 and

span (y1, · · · ,ys) = span (x1, · · · ,xs)

It follows that
xs+1 ∈ span (x1, · · · ,xs)

contrary to the assumption the xk are linearly independent. Therefore, r ≤ s as claimed. �

Corollary 16.2.5 If {u1, · · · ,um} and {v1, · · · ,vn} are two bases for V, then m = n.

Proof: By Theorem 16.2.4, m ≤ n and n ≤ m. �

This corollary is very important so here is another proof of it given independent of the exchange
theorem above.

Theorem 16.2.6 Let V be a vector space and suppose {u1, · · · ,uk} and {v1, · · · ,vm} are two bases
for V . Then k = m.

Proof: Suppose k > m. Then since the vectors, {u1, · · · ,uk} span V, there exist scalars, cij
such that

m∑

i=1

cijvi = uj .

Therefore,
k∑

j=1

djuj = 0 if and only if
k∑

j=1

m∑

i=1

cijdjvi = 0

if and only if
m∑

i=1




k∑

j=1

cijdj


vi = 0

Now since{v1, · · · ,vn} is independent, this happens if and only if

k∑

j=1

cijdj = 0, i = 1, 2, · · · ,m.

However, this is a system of m equations in k variables, d1, · · · , dk and m < k. Therefore, there
exists a solution to this system of equations in which not all the dj are equal to zero. Recall why
this is so. The augmented matrix for the system is of the form

(
C 0

)
where C is a matrix which

has more columns than rows. Therefore, there are free variables and hence nonzero solutions to the
system of equations. However, this contradicts the linear independence of {u1, · · · ,uk} because, as

explained above,
∑k

j=1 djuj = 0. Similarly it cannot happen that m > k. �

Definition 16.2.7 A vector space V is of dimension n if it has a basis consisting of n vectors. This
is well defined thanks to Corollary 16.2.5. It is always assumed here that n < ∞ in this case, such
a vector space is said to be finite dimensional.
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Theorem 16.2.8 If V = span (u1, · · · ,un) then some subset of {u1, · · · ,un} is a basis for V. Also,
if {u1, · · · ,uk} ⊆ V is linearly independent and the vector space is finite dimensional, then the set
{u1, · · · ,uk}, can be enlarged to obtain a basis of V.

Proof: Let
S = {E ⊆ {u1, · · · ,un} such that span (E) = V }.

For E ∈ S, let |E| denote the number of elements of E. Let

m ≡ min{|E| such that E ∈ S}.

Thus there exist vectors
{v1, · · · ,vm} ⊆ {u1, · · · ,un}

such that
span (v1, · · · ,vm) = V

and m is as small as possible for this to happen. If this set is linearly independent, it follows it is
a basis for V and the theorem is proved. On the other hand, if the set is not linearly independent,
then there exist scalars,

c1, · · · , cm
such that

0 =
m∑

i=1

civi

and not all the ci are equal to zero. Suppose ck ̸= 0. Then the vector vk may be solved for in terms
of the other vectors. Consequently,

V = span (v1, · · · ,vk−1,vk+1, · · · ,vm)

contradicting the definition of m. This proves the first part of the theorem.
To obtain the second part, begin with {u1, · · · ,uk} and suppose a basis for V is

{v1, · · · ,vn} .

If
span (u1, · · · ,uk) = V,

then k = n. If not, there exists a vector

uk+1 /∈ span (u1, · · · ,uk) .

Then {u1, · · · ,uk,uk+1} is also linearly independent. Continue adding vectors in this way until n
linearly independent vectors have been obtained. Then

span (u1, · · · ,un) = V

because if it did not do so, there would exist un+1 as just described and {u1, · · · ,un+1} would be a
linearly independent set of vectors having n+ 1 elements even though {v1, · · · ,vn} is a basis. This
would contradict Theorem 16.2.4. Therefore, this list is a basis. �

It is useful to emphasize some of the ideas used in the above proof.

Lemma 16.2.9 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent. Then
{u1, · · · ,uk,v} is also linearly independent.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



332 VECTOR SPACES

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and that d = 0.
But if d ̸= 0, then you can solve for v as a linear combination of the vectors, {u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear independence of
{u1, · · · ,uk} implies each ci = 0 also. �

Theorem 16.2.10 Let V be a nonzero subspace of a finite dimensional vector space, W of dimen-
sion, n. Then V has a basis with no more than n vectors.

Proof: Let v1 ∈ V where v1 ̸= 0. If span (v1) = V, stop. {v1} is a basis for V . Otherwise, there
exists v2 ∈ V which is not in span (v1) . By Lemma 16.2.9 {v1,v2} is a linearly independent set of
vectors. If span (v1,v2) = V stop, {v1,v2} is a basis for V. If span (v1,v2) ̸= V, then there exists
v3 /∈ span (v1,v2) and {v1,v2,v3} is a larger linearly independent set of vectors. Continuing this
way, the process must stop before n + 1 steps because if not, it would be possible to obtain n + 1
linearly independent vectors contrary to the exchange theorem, Theorems 16.2.4. �

16.3 Vector Spaces And Fields∗

16.3.1 Irreducible Polynomials

There exist very interesting examples of vector spaces which are not Fn and for which the field of
scalars is not R or C. This section gives a convincing application of the value of the above abstract
theory and provides many further examples of fields. It is an optional section which you might read
if you find it interesting.

Here I will give some basic algebra relating to polynomials. This is interesting for its own sake
but also provides the basis for constructing many different kinds of fields. The first is the Euclidean
algorithm for polynomials.

Definition 16.3.1 A polynomial is an expression of the form p (λ) =
∑n

k=0 akλ
k where as usual λ0

is defined to equal 1. Two polynomials are said to be equal if their corresponding coefficients are the
same. Thus, in particular, p (λ) = 0 means each of the ak = 0. An element of the field λ is said to
be a root of the polynomial if p (λ) = 0 in the sense that when you plug in λ into the formula and
do the indicated operations, you get 0. The degree of a nonzero polynomial is the highest exponent
appearing on λ. The degree of the zero polynomial p (λ) = 0 is not defined. You add and multiply
polynomials using the standard conventions learned in junior high school.

Example 16.3.2 Consider the polynomial p (λ) = λ2 + λ where the coefficients are in Z2. Is this
polynomial equal to 0? Not according to the above definition, because its coefficients are not all equal
to 0. However, p (1) = p (0) = 0 so it sends every element of Z2 to 0. Note the distinction between
saying it sends everything in the field to 0 with having the polynomial be the zero polynomial.

Lemma 16.3.3 Let f (λ) and g (λ) ̸= 0 be polynomials. Then there exists a polynomial q (λ) such
that

f (λ) = q (λ) g (λ) + r (λ)

where the degree of r (λ) is less than the degree of g (λ) or r (λ) = 0.

Proof: Consider the polynomials of the form f (λ)− g (λ) l (λ) and out of all these polynomials,
pick one which has the smallest degree. This can be done because of the well ordering of the natural
numbers. Let this take place when l (λ) = q1 (λ) and let

r (λ) = f (λ)− g (λ) q1 (λ) .
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It is required to show degree of r (λ) < degree of g (λ) or else r (λ) = 0.
Suppose f (λ) − g (λ) l (λ) is never equal to zero for any l (λ). Then r (λ) ̸= 0. It is required to

show that the degree of r (λ) is smaller than the degree of g (λ) . If this doesn’t happen, then the
degree of r ≥ the degree of g. Let

r (λ) = bmλ
m + · · ·+ b1λ+ b0

g (λ) = anλ
n + · · ·+ a1λ+ a0

where m ≥ n and bm and an are nonzero. Then let r1 (λ) be given by

r1 (λ) = r (λ)− λm−nbm
an

g (λ)

= (bmλ
m + · · ·+ b1λ+ b0)−

λm−nbm
an

(anλ
n + · · ·+ a1λ+ a0)

which has smaller degree than m, the degree of r (λ). But

r1 (λ) =

r(λ)︷ ︸︸ ︷
f (λ)− g (λ) q1 (λ)−

λm−nbm
an

g (λ)

= f (λ)− g (λ)

(
q1 (λ) +

λm−nbm
an

)
,

and this is not zero by the assumption that f (λ)− g (λ) l (λ) is never equal to zero for any l (λ) yet
has smaller degree than r (λ) which is a contradiction to the choice of r (λ). �

Now with this lemma, here is another one which is very fundamental. First here is a definition.
A polynomial is monic means it is of the form

λn + cn−1λ
n−1 + · · ·+ c1λ+ c0.

That is, the leading coefficient is 1. In what follows, the coefficients of polynomials are in F, a field
of scalars which is completely arbitrary. Think R if you need an example.

Definition 16.3.4 A polynomial f is said to divide a polynomial g if g (λ) = f (λ) r (λ) for some
polynomial r (λ). Let {φi (λ)} be a finite set of polynomials. The greatest common divisor will be
the monic polynomial q such that q (λ) divides each φi (λ) and if p (λ) divides each φi (λ) , then
p (λ) divides q (λ) . The finite set of polynomials {φi} is said to be relatively prime if their greatest
common divisor is 1. A polynomial f (λ) is irreducible if there is no polynomial with coefficients in
F which divides it except nonzero scalar multiples of f (λ) and constants.

Proposition 16.3.5 The greatest common divisor is unique.

Proof: Suppose both q (λ) and q′ (λ) work. Then q (λ) divides q′ (λ) and the other way around
and so

q′ (λ) = q (λ) l (λ) , q (λ) = l′ (λ) q′ (λ)

Therefore, the two must have the same degree. Hence l′ (λ) , l (λ) are both constants. However, this
constant must be 1 because both q (λ) and q′ (λ) are monic. �

Theorem 16.3.6 Let ψ (λ) be the greatest common divisor of {φi (λ)} , not all of which are zero
polynomials. Then there exist polynomials ri (λ) such that

ψ (λ) =

p∑

i=1

ri (λ)φi (λ) .

Furthermore, ψ (λ) is the monic polynomial of smallest degree which can be written in the above
form.
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Proof: Let S denote the set of monic polynomials which are of the form

p∑

i=1

ri (λ)φi (λ)

where ri (λ) is a polynomial. Then S ̸= ∅ because some φi (λ) ̸= 0. Then let the ri be chosen such
that the degree of the expression

∑p
i=1 ri (λ)φi (λ) is as small as possible. Letting ψ (λ) equal this

sum, it remains to verify it is the greatest common divisor. First, does it divide each φi (λ)? Suppose
it fails to divide φ1 (λ) . Then by Lemma 16.3.3

φ1 (λ) = ψ (λ) l (λ) + r (λ)

where degree of r (λ) is less than that of ψ (λ). Then dividing r (λ) by the leading coefficient if
necessary and denoting the result by ψ1 (λ) , it follows the degree of ψ1 (λ) is less than the degree
of ψ (λ) and ψ1 (λ) equals

ψ1 (λ) = (φ1 (λ)− ψ (λ) l (λ)) a

=

(
φ1 (λ)−

p∑

i=1

ri (λ)φi (λ) l (λ)

)
a

=

(
(1− r1 (λ))φ1 (λ) +

p∑

i=2

(−ri (λ) l (λ))φi (λ)
)
a

for a suitable a ∈ F. This is one of the polynomials in S. Therefore, ψ (λ) does not have the smallest
degree after all because the degree of ψ1 (λ) is smaller. This is a contradiction. Therefore, ψ (λ)
divides φ1 (λ) . Similarly it divides all the other φi (λ).

If p (λ) divides all the φi (λ) , then it divides ψ (λ) because of the formula for ψ (λ) which equals∑p
i=1 ri (λ)φi (λ) . �

Lemma 16.3.7 Suppose φ (λ) and ψ (λ) are monic polynomials which are irreducible and not equal.
Then they are relatively prime.

Proof 1: Suppose η (λ) is a nonconstant polynomial. If η (λ) divides φ (λ) , then since φ (λ) is
irreducible, η (λ) equals aφ (λ) for some a ∈ F. If η (λ) divides ψ (λ) then it must be of the form
bψ (λ) for some b ∈ F and so it follows

ψ (λ) =
a

b
φ (λ)

but both ψ (λ) and φ (λ) are monic polynomials which implies a = b and so ψ (λ) = φ (λ). This
is assumed not to happen. It follows the only polynomials which divide both ψ (λ) and φ (λ) are
constants and so the two polynomials are relatively prime. Thus a polynomial which divides them
both must be a constant, and if it is monic, then it must be 1. Thus 1 is the greatest common
divisor. �

Lemma 16.3.8 Let ψ (λ) be an irreducible monic polynomial not equal to 1 which divides

p∏

i=1

φi (λ)
ki , ki a positive integer,

where each φi (λ) is an irreducible monic polynomial. Then ψ (λ) equals some φi (λ) .
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Proof : Suppose ψ (λ) ̸= φi (λ) for all i. Then by Lemma 16.3.7, there exist polynomials
mi (λ) , ni (λ) such that

1 = ψ (λ)mi (λ) + φi (λ)ni (λ) .

Hence
(φi (λ)ni (λ))

ki = (1− ψ (λ)mi (λ))
ki

Then, letting g̃ (λ) =
∏p

i=1 ni (λ)
ki , and applying the binomial theorem, there exists a polynomial

h (λ) such that

g̃ (λ)

p∏

i=1

φi (λ)
ki ≡

p∏

i=1

ni (λ)
ki

p∏

i=1

φi (λ)
ki

=

p∏

i=1

(1− ψ (λ)mi (λ))
ki = 1 + ψ (λ)h (λ)

Thus, using the fact that ψ (λ) divides
∏p

i=1 φi (λ)
ki , for a suitable polynomial g (λ) ,

g (λ)ψ (λ) = 1 + ψ (λ)h (λ)

1 = ψ (λ) (h (λ)− g (λ))

which is impossible if ψ (λ) is non constant, as assumed. �
Now here is a simple lemma about canceling monic polynomials.

Lemma 16.3.9 Suppose p (λ) is a monic polynomial and q (λ) is a polynomial such that

p (λ) q (λ) = 0.

Then q (λ) = 0. Also if
p (λ) q1 (λ) = p (λ) q2 (λ)

then q1 (λ) = q2 (λ) .

Proof: Let

p (λ) =
k∑

j=1

pjλ
j , q (λ) =

n∑

i=1

qiλ
i, pk = 1.

Then the product equals
k∑

j=1

n∑

i=1

pjqiλ
i+j .

Then look at those terms involving λk+n. This is pkqnλ
k+n and is given to be 0. Since pk = 1, it

follows qn = 0. Thus
k∑

j=1

n−1∑

i=1

pjqiλ
i+j = 0.

Then consider the term involving λn−1+k and conclude that since pk = 1, it follows qn−1 = 0.
Continuing this way, each qi = 0. This proves the first part. The second follows from

p (λ) (q1 (λ)− q2 (λ)) = 0. �

As a simple application, one can prove uniqueness of q (λ) and r (λ) in Lemma 16.3.3. Suppose
q̃ (λ) , r̃ (λ) also work in the conclusion of this lemma. Then

q (λ) g (λ) + r (λ) = q̃ (λ) g (λ) + r̃ (λ)
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and so
(q (λ)− q̃ (λ)) g (λ) = r̃ (λ)− r (λ)

If r̃ (λ) ̸= r (λ) , then the degree of the right is less than the degree of the left which is impossible.
Thus r̃ (λ) = r (λ). Hence

(q (λ)− q̃ (λ)) g (λ) = 0

Therefore, q (λ) = q̃ (λ) .
The following is the analog of the fundamental theorem of arithmetic for polynomials.

Theorem 16.3.10 Let f (λ) be a nonconstant polynomial with coefficients in F. Then there is some
a ∈ F such that f (λ) = a

∏n
i=1 φi (λ) where φi (λ) is an irreducible nonconstant monic polynomial

and repeats are allowed. Furthermore, this factorization is unique in the sense that any two of these
factorizations have the same nonconstant factors in the product, possibly in different order and the
same constant a.

Proof: That such a factorization exists is obvious. If f (λ) is irreducible, you are done. Factor
out the leading coefficient. If not, then f (λ) = aφ1 (λ)φ2 (λ) where these are monic polynomials.
Continue doing this with the φi and eventually arrive at a factorization of the desired form.

It remains to argue the factorization is unique except for order of the factors. Suppose

a

n∏

i=1

φi (λ) = b

m∏

i=1

ψi (λ)

where the φi (λ) and the ψi (λ) are all irreducible monic nonconstant polynomials and a, b ∈ F. If
n > m, then by Lemma 16.3.8, each ψi (λ) equals one of the φj (λ) . By the above cancellation lemma,
Lemma 16.3.9, you can cancel all these ψi (λ) with appropriate φj (λ) and obtain a contradiction
because the resulting polynomials on either side would have different degrees. Similarly, it cannot
happen that n < m. It follows n = m and the two products consist of the same polynomials. Then
it follows a = b. �

The following corollary will be well used. This corollary seems rather believable but does require
a proof.

Corollary 16.3.11 Let q (λ) =
∏p

i=1 φi (λ)
ki where the ki are positive integers and the φi (λ) are

irreducible monic polynomials. Suppose also that p (λ) is a monic polynomial which divides q (λ) .
Then

p (λ) =

p∏

i=1

φi (λ)
ri

where ri is a nonnegative integer no larger than ki.

Proof: Using Theorem 16.3.10, let p (λ) = b
∏s

i=1 ψi (λ)
ri where the ψi (λ) are each irreducible

and monic and b ∈ F. Since p (λ) is monic, b = 1. Then there exists a polynomial g (λ) such that

p (λ) g (λ) = g (λ)
s∏

i=1

ψi (λ)
ri =

p∏

i=1

φi (λ)
ki

Hence g (λ) must be monic. Therefore,

p (λ) g (λ) =

p(λ)︷ ︸︸ ︷
s∏

i=1

ψi (λ)
ri

l∏

j=1

ηj (λ) =

p∏

i=1

φi (λ)
ki

for ηj monic and irreducible. By uniqueness, each ψi equals one of the φj (λ) and the same holding
true of the ηi (λ). Therefore, p (λ) is of the desired form. �
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Is there a way to compute the greatest common divisor of two polynomials? Let m (λ) , n (λ) be
two polynomials, not equal since otherwise there is nothing to show. Then by Lemma 16.3.3, there
exist unique q (λ) , m1 (λ) where m1 (λ) either equals 0 or has degree less than the degree of m (λ)
such that

n (λ) = m (λ) q (λ) +m1 (λ) , m1 (λ) ̸= n (λ) .

(q (λ) will refer to a generic polynomial in what follows.) Then if l (λ) divides both n (λ) and m (λ) ,
then l (λ) must also divide m1 (λ) . Hence in determining the greatest common divisor, one can
consider the two polynomials m1 (λ) , n (λ) instead. Then write

m1 (λ) = n (λ) q (λ) + n1 (λ)

where the degree of n1 (λ) is less than the degree of n (λ) or else equal to 0. Continuing this way,
one obtains a sequence of polynomials (mi (λ) , ni (λ)) which have the same greatest common divisor
as the original n (λ) and m (λ) but such that the sum of the degrees of mi (λ) and ni (λ) is a strictly
decreasing sequence. From the construction just described, it must be the case that eventually some
mi (λ) or ni (λ) is a constant. Say this happens when

mk (λ) = nk−1 (λ) q (λ) + nk

where nk is a constant. If it is 0 then the greatest common divisor is just nk−1 (λ) normalized to
make the leading coefficient equal to 1. If it is not zero, then the greatest common divisor is 1.

Example 16.3.12 Find the greatest common divisor of x2 + 2x+ 1 and x3 + 4x2 + 5x+ 2.

By the Euclidean algorithm for polynomials

x3 + 4x2 + 5x+ 2 =
(
x2 + 2x+ 1

)
(x+ 2) + 0

Hence the greatest common divisor is x2 + 2x+ 1.

Example 16.3.13 Find the greatest common divisor of x2 + 3x+ 2 and x3 + 3x2 − x− 3.

By the Euclidean algorithm for polynomials,

x3 + 3x2 − x− 3 =
(
x2 + 3x+ 2

)
x+ (−3x− 3)

Thus you can consider the two polynomials
(
x3 + 4x2 + 5x+ 2,−3x− 3

)
. Now divide again.

x3 + 4x2 + 5x+ 2 =

(
−1

3
x2 − 2

3
x+ 1

)
(−3x− 3) + 0

and so it follows that the greatest common divisor is x+ 1.

Example 16.3.14 Find the greatest common divisor of x2 + 3x+ 2 and x2 + 2x− 3.

By Euclidean algorithm for polynomials,

x2 + 3x+ 2 = x2 + 2x− 3 + (x− 1)

Now you can consider x2 + 3x+ 2 and x− 1. Do another division.

x2 + 3x+ 2 = (x+ 4) (x− 1) + 6

Then it follows that the greatest common divisor is 1. Thus the two original polynomials are
relatively prime.
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16.3.2 Polynomials And Fields

When you have a polynomial like x2 − 3 which has no rational roots, it turns out you can enlarge
the field of rational numbers to obtain a larger field such that this polynomial does have roots in
this larger field. I am going to discuss a systematic way to do this. It will turn out that for any
polynomial with coefficients in any field, there always exists a possibly larger field such that the
polynomial has roots in this larger field. This book has mainly featured the field of real or complex
numbers but this procedure will show how to obtain many other fields which could be used in most of
what was presented earlier in the book. Here is an important idea concerning equivalence relations.

Definition 16.3.15 Let S be a set. The symbol, ∼ is called an equivalence relation on S if it
satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 16.3.16 [x] denotes the set of all elements of S which are equivalent to x and [x] is
called the equivalence class determined by x or just the equivalence class of x.

Also recall the notion of equivalence classes.

Theorem 16.3.17 Let ∼ be an equivalence class defined on a set, S and let H denote the set of
equivalence classes. Then if [x] and [y] are two of these equivalence classes, either x ∼ y and [x] = [y]
or it is not true that x ∼ y and [x] ∩ [y] = ∅.

Definition 16.3.18 Let F be a field, for example the rational numbers, and denote by F [x] the
polynomials having coefficients in F. Suppose p (x) is a polynomial. Let a (x) ∼ b (x) (a (x) is
similar to b (x)) when

a (x)− b (x) = k (x) p (x)

for some polynomial k (x) .

Proposition 16.3.19 In the above definition, ∼ is an equivalence relation.

Proof: First of all, note that a (x) ∼ a (x) because their difference equals 0p (x) . If a (x) ∼ b (x) ,
then a (x)−b (x) = k (x) p (x) for some k (x) . But then b (x)−a (x) = −k (x) p (x) and so b (x) ∼ a (x).
Next suppose a (x) ∼ b (x) and b (x) ∼ c (x) . Then a (x) − b (x) = k (x) p (x) for some polynomial
k (x) and also b (x)− c (x) = l (x) p (x) for some polynomial l (x) . Then

a (x)− c (x) = a (x)− b (x) + b (x)− c (x)

= k (x) p (x) + l (x) p (x) = (l (x) + k (x)) p (x)

and so a (x) ∼ c (x) and this shows the transitive law. �
With this proposition, here is another definition which essentially describes the elements of the

new field. It will eventually be necessary to assume the polynomial p (x) in the above definition is
irreducible so I will begin assuming this.

Definition 16.3.20 Let F be a field and let p (x) ∈ F [x] be irreducible. This means there is no
polynomial which divides p (x) except for itself and constants. For the similarity relation defined in
Definition 16.3.18, define the following operations on the equivalence classes. [a (x)] is an equivalence
class means that it is the set of all polynomials which are similar to a (x).

[a (x)] + [b (x)] ≡ [a (x) + b (x)]

[a (x)] [b (x)] ≡ [a (x) b (x)]

This collection of equivalence classes is sometimes denoted by F [x] / (p (x)).
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Proposition 16.3.21 In the situation of Definition 16.3.20, p (x) and q (x) are relatively prime for
any q (x) ∈ F [x] which is not a multiple of p (x). Also the definitions of addition and multiplication
are well defined. In addition, if a, b ∈ F and [a] = [b] , then a = b.

Proof: First consider the claim about p (x) , q (x) being relatively prime. If ψ (x) is the greatest
common divisor, it follows ψ (x) is either equal to p (x) or 1. If it is p (x) , then q (x) is a multiple of
p (x) . If it is 1, then by definition, the two polynomials are relatively prime.

To show the operations are well defined, suppose

[a (x)] = [a′ (x)] , [b (x)] = [b′ (x)]

It is necessary to show
[a (x) + b (x)] = [a′ (x) + b′ (x)]

[a (x) b (x)] = [a′ (x) b′ (x)]

Consider the second of the two.

a′ (x) b′ (x)− a (x) b (x)

= a′ (x) b′ (x)− a (x) b′ (x) + a (x) b′ (x)− a (x) b (x)

= b′ (x) (a′ (x)− a (x)) + a (x) (b′ (x)− b (x))

Now by assumption (a′ (x)− a (x)) is a multiple of p (x) as is (b′ (x)− b (x)) , so the above is a
multiple of p (x) and by definition this shows [a (x) b (x)] = [a′ (x) b′ (x)]. The case for addition is
similar.

Now suppose [a] = [b] . This means a − b = k (x) p (x) for some polynomial k (x) . Then k (x)
must equal 0 since otherwise the two polynomials a − b and k (x) p (x) could not be equal because
they would have different degree. �

Note that from this proposition and math induction, if each ai ∈ F,

[
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

]

= [an] [x]
n
+ [an−1] [x]

n−1
+ · · · [a1] [x] + [a0] (16.7)

With the above preparation, here is a definition of a field in which the irreducible polynomial
p (x) has a root.

Definition 16.3.22 Let p (x) ∈ F [x] be irreducible and let a (x) ∼ b (x) when a (x) − b (x) is a
multiple of p (x) . Let G denote the set of equivalence classes as described above with the operations
also described in Definition 16.3.20.

Also here is another useful definition and a simple proposition which comes from it.

Definition 16.3.23 Let F ⊆ K be two fields. Then clearly K is also a vector space over F. Then
also, K is called a finite field extension of F if the dimension of this vector space, denoted by [K : F ]
is finite.

There are some easy things to observe about this.

Proposition 16.3.24 Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K] [K : F ].

Proof: Let {li}ni=1 be a basis for L over K and let {kj}mj=1 be a basis of K over F . Then if
l ∈ L, there exist unique scalars xi in K such that

l =

n∑

i=1

xili
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Now xi ∈ K so there exist fji such that

xi =
m∑

j=1

fjikj

Then it follows that

l =
n∑

i=1

m∑

j=1

fjikj li

It follows that {kj li} is a spanning set. If

n∑

i=1

m∑

j=1

fjikj li = 0

Then, since the li are independent, it follows that

m∑

j=1

fjikj = 0

and since {kj} is independent, each fji = 0 for each j for a given arbitrary i. Therefore, {kj li} is a
basis. �

Theorem 16.3.25 The set of all equivalence classes G ≡ F/ (p (x)) described above with the mul-
tiplicative identity given by [1] and the additive identity given by [0] along with the operations of
Definition 16.3.20, is a field and p ([x]) = [0] . (Thus p has a root in this new field.) In addition to
this, [G : F] = n, the degree of p (x) .

Proof: Everything is obvious except for the existence of the multiplicative inverse and the
assertion that p ([x]) = 0. Suppose then that [a (x)] ̸= [0] . That is, a (x) is not a multiple of p (x).

Why does [a (x)]
−1

exist? By Theorem 16.3.6, a (x) , p (x) are relatively prime and so there exist
polynomials ψ (x) , φ (x) such that

1 = ψ (x) p (x) + a (x)φ (x)

and so
1− a (x)φ (x) = ψ (x) p (x)

which, by definition implies

[1− a (x)φ (x)] = [1]− [a (x)φ (x)] = [1]− [a (x)] [φ (x)] = [0]

and so [φ (x)] = [a (x)]
−1

. This shows G is a field.
Now if p (x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0, p ([x]) = 0 by (16.7) and the definition which

says [p (x)] = [0].
Consider the claim about the dimension. It was just shown that [1] , [x] ,

[
x2
]
, · · · , [xn] is linearly

dependent. Also [1] , [x] ,
[
x2
]
, · · · ,

[
xn−1

]
is independent because if not, there would exist a poly-

nomial q (x) of degree n − 1 which is a multiple of p (x) which is impossible. Now for [q (x)] ∈ G,
you can write

q (x) = p (x) l (x) + r (x)

where the degree of r (x) is less than n or else it equals 0. Either way, [q (x)] = [r (x)] which is a
linear combination of [1] , [x] ,

[
x2
]
, · · · ,

[
xn−1

]
. Thus [G : F] = n as claimed. �

Note that if p (x) were not irreducible, then you could find a field extension G such that [G : F] ≤
n. You could do this by working with an irreducible factor of p (x).
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Usually, people simply write b rather than [b] if b ∈ F. Then with this convention,

[bφ (x)] = [b] [φ (x)] = b [φ (x)] .

This shows how to enlarge a field to get a new one in which the polynomial has a root. By using
a succession of such enlargements, called field extensions, there will exist a field in which the given
polynomial can be factored into a product of polynomials having degree one. The field you obtain
in this process of enlarging in which the given polynomial factors in terms of linear factors is called
a splitting field.

Theorem 16.3.26 Let p (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be a polynomial with coefficients in

a field of scalars F. There exists a larger field G such that there exist {z1, · · · , zn} listed according
to multiplicity such that

p (x) =
n∏

i=1

(x− zi)

This larger field is called the splitting field. Furthermore,

[G : F] ≤ n!

Proof: From Theorem 16.3.25, there exists a field F1 such that p (x) has a root, z1 (= [x] if p is
irreducible.) Then by the Euclidean algorithm

p (x) = (x− z1) q1 (x) + r

where r ∈ F1. Since p (z1) = 0, this requires r = 0. Now do the same for q1 (x) that was done for
p (x) , enlarging the field to F2 if necessary, such that in this new field

q1 (x) = (x− z2) q2 (x) .

and so
p (x) = (x− z1) (x− z2) q2 (x)

After n such extensions, you will have obtained the necessary field G.
Finally consider the claim about dimension. Then, by Theorem 16.3.25, there is a larger field

G1 such that p (x) has a root a1 in G1 and [G : F] ≤ n. Then

p (x) = (x− a1) q (x)

Continue this way until the polynomial equals the product of linear factors. Then by Proposition
16.3.24 applied multiple times, [G : F] ≤ n!. �

Example 16.3.27 The polynomial x2+1 is irreducible in R (x) , polynomials having real coefficients.
To see this is the case, suppose ψ (x) divides x2 + 1. Then

x2 + 1 = ψ (x) q (x)

If the degree of ψ (x) is less than 2, then it must be either a constant or of the form ax + b. In the
latter case, −b/a must be a zero of the right side, hence of the left but x2 + 1 has no real zeros.
Therefore, the degree of ψ (x) must be two and q (x) must be a constant. Thus the only polynomial
which divides x2+1 are constants and multiples of x2+1. Therefore, this shows x2+1 is irreducible.
Find the inverse of

[
x2 + x+ 1

]
in the space of equivalence classes, R/

(
x2 + 1

)
.

You can solve this with partial fractions.

1

(x2 + 1) (x2 + x+ 1)
= − x

x2 + 1
+

x+ 1

x2 + x+ 1
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and so
1 = (−x)

(
x2 + x+ 1

)
+ (x+ 1)

(
x2 + 1

)

which implies
1 ∼ (−x)

(
x2 + x+ 1

)

and so the inverse is [−x] .
The following proposition is interesting. It was essentially proved above but to emphasize it,

here it is again.

Proposition 16.3.28 Suppose p (x) ∈ F [x] is irreducible and has degree n. Then every element of
G = F [x] / (p (x)) is of the form [0] or [r (x)] where the degree of r (x) is less than n.

Proof: This follows right away from the Euclidean algorithm for polynomials. If k (x) has degree
larger than n− 1, then

k (x) = q (x) p (x) + r (x)

where r (x) is either equal to 0 or has degree less than n. Hence

[k (x)] = [r (x)] . �

Example 16.3.29 In the situation of the above example, find [ax+ b]
−1

assuming a2+b2 ̸= 0. Note
this includes all cases of interest thanks to the above proposition.

You can do it with partial fractions as above.

1

(x2 + 1) (ax+ b)
=

b− ax

(a2 + b2) (x2 + 1)
+

a2

(a2 + b2) (ax+ b)

and so

1 =
1

a2 + b2
(b− ax) (ax+ b) +

a2

(a2 + b2)

(
x2 + 1

)

Thus
1

a2 + b2
(b− ax) (ax+ b) ∼ 1

and so

[ax+ b]
−1

=
[(b− ax)]

a2 + b2
=
b− a [x]

a2 + b2

You might find it interesting to recall that (ai+ b)
−1

= b−ai
a2+b2 .

16.3.3 The Algebraic Numbers

Each polynomial having coefficients in a field F has a splitting field. Consider the case of all
polynomials p (x) having coefficients in a field F ⊆ G and will look at all roots which are also in G.
The theory of vector spaces is very useful in the study of these algebraic numbers.

Definition 16.3.30 The algebraic numbers A are those numbers which are in G and also roots of
some polynomial p (x) having coefficients in F. Here is a definition.

Theorem 16.3.31 Let a ∈ A. Then there exists a unique monic irreducible polynomial p (x) having
coefficients in F such that p (a) = 0. This is called the minimal polynomial for a.
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Proof: By definition, there exists a polynomial q (x) having coefficients in F such that q (a) = 0.
If q (x) is irreducible, divide by the leading coefficient and this proves the existence. If q (x) is not
irreducible, then there exist nonconstant polynomials r (x) and k (x) such that q (x) = r (x) k (x).
Then one of r (a) , k (a) equals 0. Pick the one which equals zero and let it play the role of q (x).
Continuing this way, in finitely many steps one obtains an irreducible polynomial p (x) such that
p (a) = 0. Now divide by the leading coefficient and this proves existence. Suppose pi, i = 1, 2 both
work and they are not equal. Then by Lemma 16.3.7 they must be relatively prime because they
are both assumed to be irreducible and so there exist polynomials l (x) , k (x) such that

1 = l (x) p1 (x) + k (x) p2 (x)

But now when a is substituted for x, this yields 0 = 1, a contradiction. The polynomials are equal
after all. �

Definition 16.3.32 For a an algebraic number, let deg (a) denote the degree of the minimal poly-
nomial of a.

Also, here is another definition.

Definition 16.3.33 Let a1, · · · , am be in A. A polynomial in {a1, · · · , am} will be an expression of
the form ∑

k1···kn

ak1···kn
ak1

1 · · · akn
n

where the ak1···kn
are in F, each kj is a nonnegative integer, and all but finitely many of the ak1···kn

equal zero. The collection of such polynomials will be denoted by

F [a1, · · · , am] .

Now notice that for a an algebraic number, F [a] is a vector space with field of scalars F. Similarly,
for {a1, · · · , am} algebraic numbers, F [a1, · · · , am] is a vector space with field of scalars F. The
following fundamental proposition is important.

Proposition 16.3.34 Let {a1, · · · , am} be algebraic numbers. Then

dimF [a1, · · · , am] ≤
m∏

j=1

deg (aj)

and for an algebraic number a,
dimF [a] = deg (a)

Every element of F [a1, · · · , am] is in A and F [a1, · · · , am] is a field.

Proof: First consider the second assertion. Let the minimal polynomial of a be

p (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Since p (a) = 0, it follows
{
1, a, a2, · · · , an

}
is linearly dependent. However, if the degree of q (x) is

less than the degree of p (x) , then if q (x) is not a constant, the two must be relatively prime because
p (x) is irreducible and so there exist polynomials k (x) , l (x) such that

1 = l (x) q (x) + k (x) p (x)

and this is a contradiction if q (a) = 0 because it would imply upon replacing x with a that 1 = 0.
Therefore, no polynomial having degree less than n can have a as a root. It follows

{
1, a, a2, · · · , an−1

}
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is linearly independent. Thus dimF [a] = deg (a) = n. Here is why this is. If q (a) is any element of
F [a] ,

q (x) = p (x) k (x) + r (x)

where deg r (x) < deg p (x) and so q (a) = r (a) and r (a) ∈ span
(
1, a, a2, · · · , an−1

)
.

Now consider the first claim. By definition, F [a1, · · · , am] is obtained from all linear combinations

of
{
ak1

1 , a
k2

2 , · · · , akn
n

}
where the ki are nonnegative integers. From the first part, it suffices to

consider only kj ≤ deg (aj). Therefore, there exists a spanning set for F [a1, · · · , am] which has

m∏

i=1

deg (ai)

entries. By Theorem 16.2.4 this proves the first claim.
Finally consider the last claim. Let g (a1, · · · , am) be a polynomial in {a1, · · · , am} in F [a1, · · · , am].

Since

dimF [a1, · · · , am] ≡ p ≤
m∏

j=1

deg (aj) <∞,

it follows
1, g (a1, · · · , am) , g (a1, · · · , am)

2
, · · · , g (a1, · · · , am)

p

are dependent. It follows g (a1, · · · , am) is the root of some polynomial having coefficients in F.
Thus everything in F [a1, · · · , am] is algebraic. Why is F [a1, · · · , am] a field? Let g (a1, · · · , am) be
as just mentioned. Then it has a minimal polynomial,

p (x) = xp + ap−1x
p−1 + · · ·+ a1x+ a0

where the ai ∈ F. Then a0 ̸= 0 or else the polynomial would not be minimal. Therefore,

g (a1, · · · , am)
(
g (a1, · · · , am)

p−1
+ ap−1g (a1, · · · , am)

p−2
+ · · ·+ a1

)
= −a0

and so the multiplicative inverse for g (a1, · · · , am) is

g (a1, · · · , am)
p−1

+ ap−1g (a1, · · · , am)
p−2

+ · · ·+ a1
−a0

∈ F [a1, · · · , am] .

The other axioms of a field are obvious. �
Now from this proposition, it is easy to obtain the following interesting result about the algebraic

numbers.

Theorem 16.3.35 The algebraic numbers A, those roots of polynomials in F [x] which are in G,
are a field.

Proof: Let a be an algebraic number and let p (x) be its minimal polynomial. Then p (x) is of
the form

xn + an−1x
n−1 + · · ·+ a1x+ a0

where a0 ̸= 0. Then plugging in a yields

a

(
an−1 + an−1a

n−2 + · · ·+ a1
)
(−1)

a0
= 1.

and so a−1 =
(an−1+an−1a

n−2+···+a1)(−1)

a0
∈ F [a]. By the proposition, every element of F [a] is in A

and this shows that for every element of A, its inverse is also in A. What about products and sums
of things in A? Are they still in A? Yes. If a, b ∈ A, then both a+ b and ab ∈ F [a, b] and from the
proposition, each element of F [a, b] is in A. �

A typical example of what is of interest here is when the field F of scalars is Q, the rational
numbers and the field G is R or C. However, you can certainly conceive of many other examples
by considering the integers mod a prime, for example (See Problems 1 - Problem 4 on Page 326 for
example.) or any of the fields which occur as field extensions in the above.
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16.3.4 The Lindemann Weierstrass Theorem And Vector Spaces

As another application of the abstract concept of vector spaces, there is an amazing theorem due
to Weierstrass and Lindemann. There is a proof of this theorem in [9]. It is also in an appendix of
Linear Algebra.

Theorem 16.3.36 Suppose a1, · · · , an are algebraic numbers and suppose α1, · · · , αn are distinct
algebraic numbers. Then

n∑

i=1

aie
αi ̸= 0

In other words, the {eα1 , · · · , eαn} are independent as vectors with field of scalars equal to the
algebraic numbers.

A number is transcendental if it is not a root of a polynomial which has integer coefficients. Most
numbers are this way but it is hard to verify that specific numbers are transcendental. That π is
transcendental follows from

e0 + eiπ = 0.

By the above theorem, this could not happen if π were algebraic because then iπ would also be
algebraic. Recall these algebraic numbers form a field and i is clearly algebraic, being a root of
x2 + 1. This fact about π was first proved by Lindemann in 1882 and then the general theorem
above was proved by Weierstrass in 1885. This fact that π is transcendental solved an old problem
called squaring the circle which was to construct a square with the same area as a circle using a
straight edge and compass. It can be shown that the fact π is transcendental implies this problem
is impossible.1

16.4 Exercises

1. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

2. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

3. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be concluded
they span F5? Here F is an arbitrary field. Explain.

4. If you have 6 vectors in F5, is it possible they are linearly independent? Here F is an arbitrary
field. Explain.

5. Show in any vector space, 0 is unique.

6. ↑In any vector space, show that if x+ y = 0, then y = −x.

7. ↑Show that in any vector space, 0x = 0. That is, the scalar 0 times the vector x gives the
vector 0.

8. ↑Show that in any vector space, (−1)x = −x.

9. Let X be a vector space and suppose {x1, · · · ,xk} is a set of vectors from X. Show that 0 is
in span (x1, · · · ,xk) .

1Gilbert, the librettist of the Savoy operas, may have heard about this great achievement. In Princess Ida which

opened in 1884 he has the following lines. “As for fashion they forswear it, so the say - so they say; and the circle -

they will square it some fine day some fine day.” Of course it had been proved impossible to do this a couple of years

before.
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10. Let X consist of the real valued functions which are defined on an interval [a, b] . For f, g ∈
X, f + g is the name of the function which satisfies (f + g) (x) = f (x) + g (x) and for α a
real number, (αf) (x) ≡ α (f (x)). Show this is a vector space with field of scalars equal to R.
Also explain why it cannot possibly be finite dimensional.

11. Let S be a nonempty set and let V denote the set of all functions which are defined on S and
have values inW a vector space having field of scalars F. Also define vector addition according
to the usual rule, (f + g) (s) ≡ f (s) + g (s) and scalar multiplication by (αf) (s) ≡ αf (s).
Show that V is a vector space with field of scalars F.

12. Verify that any field F is a vector space with field of scalars F. However, show that R is a
vector space with field of scalars Q.

13. Let F be a field and consider functions defined on {1, 2, · · · , n} having values in F. Explain
how, if V is the set of all such functions, V can be considered as Fn.

14. Let V be the set of all functions defined on N ≡{1, 2, · · · } having values in a field F such
that vector addition and scalar multiplication are defined by (f + g) (s) ≡ f (s) + g (s) and
(αf) (s) ≡ αf (s) respectively, for f ,g ∈ V and α ∈ F. Explain how this is a vector space and
show that for ei given by

ei (k) ≡
{

1 if i = k
0 if i ̸= k

,

the vectors {ek}∞k=1 are linearly independent.

15. Suppose, in the context of Problem 10 you have smooth functions {y1, y2, · · · , yn} (all deriva-
tives exist) defined on an interval [a, b] . Then the Wronskian of these functions is the deter-
minant

W (y1, · · · , yn) (x) = det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)




Show that if W (y1, · · · , yn) (x) ̸= 0 for some x, then the functions are linearly independent.

16. Give an example of two functions, y1, y2 defined on [−1, 1] such that

W (y1, y2) (x) = 0

for all x ∈ [−1, 1] and yet {y1, y2} is linearly independent.

17. Let the vectors be polynomials of degree no more than 3. Show that with the usual definitions
of scalar multiplication and addition wherein, for p (x) a polynomial, (αp) (x) = αp (x) and for
p, q polynomials (p+ q) (x) ≡ p (x) + q (x) , this is a vector space.

18. In the previous problem show that a basis for the vector space is
{
1, x, x2, x3

}
.

19. Let V be the polynomials of degree no more than 3. Determine which of the following are
bases for this vector space.

(a)
{
x+ 1, x3 + x2 + 2x, x2 + x, x3 + x2 + x

}

(b)
{
x3 + 1, x2 + x, 2x3 + x2, 2x3 − x2 − 3x+ 1

}

20. In the context of the above problem, consider polynomials

{
aix

3 + bix
2 + cix+ di, i = 1, 2, 3, 4

}
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Show that this collection of polynomials is linearly independent on an interval [a, b] if and only
if 



a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4




is an invertible matrix.

21. Let the field of scalars be Q, the rational numbers and let the vectors be of the form a+ b
√
2

where a, b are rational numbers. Show that this collection of vectors is a vector space with field
of scalars Q and give a basis for this vector space. Suppose V is a finite dimensional vector
space. Based on the exchange theorem above, it was shown that any two bases have the same
number of vectors in them. Give a different proof of this fact using the earlier material in the
book. Hint: Suppose {x1, · · · ,xn} and {y1, · · · ,ym} are two bases with m < n. Then define

φ : Fn 7→ V, ψ : Fm 7→ V

by

φ (a) ≡
n∑

k=1

akxk, ψ (b) ≡
m∑

j=1

bjyj

Consider the linear transformation, ψ−1 ◦ φ. Argue it is a one to one and onto mapping from
Fn to Fm. Now consider a matrix of this linear transformation and its row reduced echelon
form.

22. Suppose V is a finite dimensional vector space. Based on the exchange theorem above, it was
shown that any two bases have the same number of vectors in them. Give a different proof of
this fact using the earlier material in the book. Hint: Suppose {x1, · · · ,xn} and {y1, · · · ,ym}
are two bases with m < n. Then define

φ : Fn 7→ V, ψ : Fm 7→ V

by

φ (a) ≡
n∑

k=1

akxk, ψ (b) ≡
m∑

j=1

bjyj

Consider the linear transformation, ψ−1 ◦ φ. Argue it is a one to one and onto mapping from
Fn to Fm. Now consider a matrix of this linear transformation and its row reduced echelon
form.

23. This and the following problems will present most of a differential equations course. To begin
with, consider the scalar initial value problem

y′ = ay, y (t0) = y0

When a is real, show the unique solution to this problem is y = y0e
a(t−t0). Next suppose

y′ = (a+ ib) y, y (t0) = y0 (16.8)

where y (t) = u (t) + iv (t) . Show there exists a unique solution and it is

y (t) = y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0))

≡ e(a+ib)(t−t0)y0. (16.9)
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Next show that for a real or complex there exists a unique solution to the initial value problem

y′ = ay + f, y (t0) = y0

and it is given by

y (t) = ea(t−t0)y0 + eat
∫ t

t0

e−asf (s) ds.

Hint: For the first part write as y′ − ay = 0 and multiply both sides by e−at. Then explain
why you get

d

dt

(
e−aty (t)

)
= 0, y (t0) = 0.

Now you finish the argument. To show uniqueness in the second part, suppose

y′ = (a+ ib) y, y (0) = 0

and verify this requires y (t) = 0. To do this, note

y′ = (a− ib) y, y (0) = 0

and that

d

dt
|y (t)|2 = y′ (t) y (t) + y′ (t) y (t)

= (a+ ib) y (t) y (t) + (a− ib) y (t) y (t)

= 2a |y (t)|2 , |y|2 (t0) = 0

Thus from the first part |y (t)|2 = 0e−2at = 0. Finally observe by a simple computation that
(16.8) is solved by (16.9). For the last part, write the equation as

y′ − ay = f

and multiply both sides by e−at and then integrate from t0 to t using the initial condition.

24. ↑Now consider A an n× n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T

where T is upper triangular. Now consider the first order initial value problem

x′ = Ax, x (t0) = x0.

Show there exists a unique solution to this first order system. Hint: Let y = Q−1x and so
the system becomes

y′ = Ty, y (t0) = Q−1x0 (16.10)

Now letting y =(y1, · · · , yn)T , the bottom equation becomes

y′n = tnnyn, yn (t0) =
(
Q−1x0

)
n
.

Then use the solution you get in this to get the solution to the initial value problem which
occurs one level up, namely

y′n−1 = t(n−1)(n−1)yn−1 + t(n−1)nyn, yn−1 (t0) =
(
Q−1x0

)
n−1

Continue doing this to obtain a unique solution to (16.10).

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



16.4. EXERCISES 349

25. ↑Now suppose Φ (t) is an n× n matrix of the form

Φ (t) =
(
x1 (t) · · · xn (t)

)
(16.11)

where
x′
k (t) = Axk (t) .

Explain why
Φ′ (t) = AΦ(t)

if and only if Φ (t) is given in the form of (16.11). Also explain why if c ∈ Fn,

y (t) ≡ Φ (t) c

solves the equation
y′ (t) = Ay (t) .

26. ↑In the above problem, consider the question whether all solutions to

x′ = Ax (16.12)

are obtained in the form Φ (t) c for some choice of c ∈ Fn. In other words, is the general
solution to this equation Φ (t) c for c ∈ Fn? Prove the following theorem using linear algebra.

Theorem 16.4.1 Suppose Φ(t) is an n× n matrix which satisfies

Φ′ (t) = AΦ (t) .

Then the general solution to (16.12) is Φ(t) c if and only if Φ (t)
−1

exists for some t. Fur-

thermore, if Φ′ (t) = AΦ (t) , then either Φ(t)
−1

exists for all t or Φ(t)
−1

never exists for any
t.

(det (Φ (t)) is called the Wronskian and this theorem is sometimes called the Wronskian alter-
native.)

Hint: Suppose first the general solution is of the form Φ (t) c where c is an arbitrary constant

vector in Fn. You need to verify Φ (t)
−1

exists for some t. In fact, show Φ (t)
−1

exists for every

t. Suppose then that Φ (t0)
−1

does not exist. Explain why there exists c ∈ Fn such that there
is no solution x to

c = Φ(t0)x

By the existence part of Problem 24 there exists a solution to

x′ = Ax, x (t0) = c

but this cannot be in the form Φ (t) c. Thus for every t, Φ (t)
−1

exists. Next suppose for some

t0,Φ(t0)
−1

exists. Let z′ = Az and choose c such that

z (t0) = Φ (t0) c

Then both z (t) ,Φ(t) c solve
x′ = Ax, x (t0) = z (t0)

Apply uniqueness to conclude z = Φ(t) c. Finally, consider that Φ (t) c for c ∈ Fn either is the

general solution or it is not the general solution. If it is, then Φ (t)
−1

exists for all t. If it is

not, then Φ (t)
−1

cannot exist for any t from what was just shown.
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27. ↑Let Φ′ (t) = AΦ (t) . Then Φ (t) is called a fundamental matrix if Φ (t)
−1

exists for all t. Show
there exists a unique solution to the equation

x′ = Ax+ f , x (t0) = x0 (16.13)

and it is given by the formula

x (t) = Φ (t) Φ (t0)
−1

x0 +Φ(t)

∫ t

t0

Φ (s)
−1

f (s) ds

Now these few problems have done virtually everything of significance in an entire undergrad-
uate differential equations course, illustrating the superiority of linear algebra. The above
formula is called the variation of constants formula.

Hint: Uniqueness is easy. If x1,x2 are two solutions then let u (t) = x1 (t)− x2 (t) and argue
u′ = Au, u (t0) = 0. Then use Problem 24. To verify there exists a solution, you could just
differentiate the above formula using the fundamental theorem of calculus and verify it works.
Another way is to assume the solution in the form

x (t) = Φ (t) c (t)

and find c (t) to make it all work out. This is called the method of variation of parameters.

28. ↑Show there exists a special Φ such that Φ′ (t) = AΦ(t) , Φ (0) = I, and Φ (t)
−1

exists for all
t. Show using uniqueness that

Φ (−t) = Φ (t)
−1

and that for all t, s ∈ R
Φ(t+ s) = Φ (t) Φ (s)

Explain why with this special Φ, the solution to (16.13) can be written as

x (t) = Φ (t− t0)x0 +

∫ t

t0

Φ(t− s) f (s) ds.

Hint: Let Φ (t) be such that the jth column is xj (t) where

x′
j = Axj , xj (0) = ej .

Use uniqueness as required.

29. ∗Using the LindemannWeierstrass theorem show that if σ is an algebraic number sinσ, cosσ, lnσ,
and e are all transcendental. Hint: Observe, that

ee−1 + (−1) e0 = 0, 1eln(σ) + (−1)σe0 = 0,

1

2i
eiσ − 1

2i
e−iσ + (−1) sin (σ) e0 = 0.

16.5 Inner Product Spaces

16.5.1 Basic Definitions And Examples

An inner product space V is a vector space which also has an inner product. It is usually assumed,
when considering inner product spaces that the field of scalars is either F = R or C. This terminology
has already been considered in the context of Fn. In this section, it will be assumed that the field
of scalars is C, the complex numbers, unless specified to be something else. An inner product is a
mapping ⟨·, ·⟩ : V × V 7→ C which satisfies the following axioms.
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Axioms For Inner Product

1. ⟨u,v⟩ ∈ C, ⟨u,v⟩ = ⟨v,u⟩.

2. If a, b are numbers and u,v, z are vectors then ⟨(au+ bv) , z⟩ = a ⟨u, z⟩+ b ⟨v, z⟩ .

3. ⟨u,u⟩ ≥ 0 and it equals 0 if and only if u = 0.

Note this implies ⟨x,αy⟩ = α ⟨x,y⟩ because

⟨x,αy⟩ = ⟨αy,x⟩ = α ⟨y,x⟩ = α ⟨x,y⟩

Example 16.5.1 Let V be the continuous complex valued functions defined on a finite closed interval
I. Define an inner product as follows.

⟨f, g⟩ ≡
∫

I

f (x) g (x)p (x) dx

where p (x) some function which is strictly positive on the closed interval I. It is understood in
writing this that ∫

I

f (x) + ig (x) dx ≡
∫

I

f (x) dx+ i

∫

I

g (x) dx

Then with this convention, the usual calculus theorems hold about evaluating integrals using the
fundamental theorem of calculus and so forth. You simply apply these theorems to the real and
imaginary parts of a complex valued function.

Example 16.5.2 Let V be the polynomials of degree at most n which are defined on a closed interval
I and let {x0, x1, · · · , xn} be n+ 1 distinct points in I. Then define

⟨f, g⟩ ≡
n∑

k=0

f (xk) g (xk)

This last example clearly satisfies all the axioms for an inner product except for the one which
says that ⟨u,u⟩ = 0 if and only if u = 0. Suppose then that ⟨f, f⟩ = 0. Then f must vanish at
n + 1 distinct points but f is a polynomial of degree n. Therefore, it has at most n zeros unless it
is identically equal to 0. Hence the second case holds and so f equals 0.

Example 16.5.3 Let V be any complex vector space and let {v1, · · · ,vn} be a basis. Decree that

⟨vi,vj⟩ = δij .

Then define ⟨
n∑

j=1

cjvj ,
n∑

k=1

dkvk

⟩
≡
∑

j,k

cjdk ⟨vj ,vk⟩ =
n∑

k=1

ckdk

This makes the complex vector space into an inner product space.

Example 16.5.4 Let V consist of sequences a = {ak}∞k=1 , ak ∈ C, with the property that

∞∑

k=1

|ak|2 <∞

and the inner product is then defined as

⟨a,b⟩ ≡
∞∑

k=1

akbk
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All of the axioms of the inner product are obvious for this example except the most basic one
which says that the inner product has values in C. Why does the above sum even converge? It
converges from a comparison test.

∣∣akbk
∣∣ ≤ |ak|2

2
+

|bk|2
2

and by assumption,
∞∑

k=1

(
|ak|2
2

+
|bk|2
2

)
<∞

and therefore, the given sum which defines the inner product is absolutely convergent. Therefore,
thanks to completeness of C this sum also converges. This fact should be familiar to anyone who
has had a calculus class in the context that the sequences are real valued. The case where they are
complex valued follows right away from a consideration of real and imaginary parts.

By far the most important example of an inner product space is L2 (Ω), the space of Lebesgue
measurable square integrable functions defined on Ω. However, this is a book on algebra, not
analysis, so this example will be ignored.

16.5.2 The Cauchy Schwarz Inequality And Norms

The most fundamental theorem relative to inner products is the Cauchy Schwarz inequality.

Theorem 16.5.5 (Cauchy Schwarz)The following inequality holds for x and y ∈ V, an inner prod-
uct space.

|⟨x,y⟩| ≤ ⟨x,x⟩1/2 ⟨y,y⟩1/2 (16.14)

Equality holds in this inequality if and only if one vector is a multiple of the other.

Proof: Let θ ∈ C such that |θ| = 1 and

θ ⟨x,y⟩ = |⟨x,y⟩|

Consider p (t) ≡
⟨
x+ θty,x+ tθy

⟩
where t ∈ R. Then from the above list of properties of the dot

product,

0 ≤ p (t) = ⟨x,x⟩+ tθ ⟨x,y⟩+ tθ ⟨y,x⟩+ t2 ⟨y,y⟩
= ⟨x,x⟩+ tθ ⟨x,y⟩+ tθ⟨x,y⟩+ t2 (y,y)

= ⟨x,x⟩+ 2tRe θ ⟨x,y⟩+ t2 ⟨y,y⟩
= ⟨x,x⟩+ 2t |⟨x,y⟩|+ t2 ⟨y,y⟩ (16.15)

and this must hold for all t ∈ R. Therefore, if ⟨y,y⟩ = 0 it must be the case that |⟨x,y⟩| = 0 also
since otherwise the above inequality would be violated for large negative t. Therefore, in this case,

|⟨x,y⟩| ≤ ⟨x,x⟩1/2 ⟨y,y⟩1/2 .

In the other case, if ⟨y,y⟩ ̸= 0, then p (t) ≥ 0 for all t means the graph of y = p (t) is a parabola
which opens up and it either has exactly one real zero in the case its vertex touches the t axis or it
has no real zeros.

t t

From the quadratic formula this happens exactly when

4 |⟨x,y⟩|2 − 4 ⟨x,x⟩ ⟨y,y⟩ ≤ 0
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which is equivalent to (16.14).
It is clear from a computation that if one vector is a scalar multiple of the other that equality holds

in (16.14). Conversely, suppose equality does hold. Then this is equivalent to saying 4 |⟨x,y⟩|2 −
4 ⟨x,x⟩ ⟨y,y⟩ = 0 and so from the quadratic formula, there exists one real zero to p (t) = 0. Call it
t0. Then

p (t0) ≡
⟨
x+ θt0y,x+ t0θy

⟩
=
∣∣x+ θt0y

∣∣2 = 0

and so x = −θt0y. �
So what does the Cauchy Schwarz inequality say in the above examples? In Example 16.5.1 it

says that

∣∣∣∣
∫

I

f (x) g (x)p (x) dx

∣∣∣∣ ≤
(∫

I

|f (x)|2 p (x) dx
)1/2(∫

I

|g (x)|2 p (x) dx
)1/2

With the Cauchy Schwarz inequality, it is possible to obtain the triangle inequality. This is the
inequality in the next theorem. First it is necessary to define the norm or length of a vector. This
is what is in the next definition.

Definition 16.5.6 Let V be an inner product space and let z ∈ V. Then |z| ≡ ⟨z, z⟩1/2. |z| is called
the norm of z and also the length of z.

With the definition of length of a vector, here are the main properties of length.

Theorem 16.5.7 For length defined in Definition 16.5.6, the following hold.

|z| ≥ 0 and |z| = 0 if and only if z = 0 (16.16)

If α is a scalar, |αz| = |α| |z| (16.17)

|z+w| ≤ |z|+ |w| . (16.18)

Proof: The first two claims are left as exercises. To establish the third,

|z+w|2 = ⟨z+w, z+w⟩
= ⟨z, z⟩+ ⟨w,w⟩+ ⟨w, z⟩+ ⟨z,w⟩
= |z|2 + |w|2 + 2Re ⟨w, z⟩
≤ |z|2 + |w|2 + 2 |⟨w, z⟩|
≤ |z|2 + |w|2 + 2 |w| |z| = (|z|+ |w|)2 . �

The properties (16.16) - (16.18) are the axioms for a norm. A vector space which has a norm is
called a normed linear space or a normed vector space.

16.5.3 The Gram Schmidt Process

The Gram Schmidt process is also valid in an inner product space. If you have a linearly independent
set of vectors, there is an orthonormal set of vectors which has the same span. Recall the definition
of an orthonormal set. It is the same as before.

Definition 16.5.8 Let V be an inner product space and let {ui} be a collection of vectors. It is an
orthonormal set if

⟨uk,uj⟩ = δjk.
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As before, every orthonormal set of vectors is linearly independent. If

n∑

k=1

ckuk = 0

where {uk}nk=1 is an orthonormal set of vectors, why is each ck = 0?
This is true because you can take the inner product of both sides with uj . Then

⟨
n∑

k=1

ckuk,uj

⟩
=
⟨
0,uj

⟩
.

The right side equals 0 because

⟨0,u⟩ = ⟨0+ 0,u⟩ = ⟨0,u⟩+ ⟨0,u⟩

Subtracting ⟨0,u⟩ from both sides shows that ⟨0,u⟩ = 0. Therefore, from the properties of the inner
product,

0 =
⟨
0,uj

⟩
=

⟨
n∑

k=1

ckuk,uj

⟩
=

n∑

k=1

ck ⟨uk,uj⟩ =
n∑

k=1

ckδkj = cj .

Since cj was arbitrary, this verifies that an orthonormal set of vectors is linearly independent.
Now consider the Gram Schmidt process.

Lemma 16.5.9 Let {x1, · · · ,xn} be a linearly independent subset of an inner product space V. Then
there exists an orthonormal set of vectors {u1, · · · ,un} which has the property that for each k ≤ n,
span(x1, · · · ,xk) = span (u1, · · · ,uk) .

Proof: Let u1 ≡ x1/ |x1| . Thus for k = 1, span (u1) = span (x1) and {u1} is an orthonormal
set. Now suppose for some k < n, u1, · · · , uk have been chosen such that (uj ,ul) = δjl and
span (x1, · · · ,xk) = span (u1, · · · ,uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 ⟨xk+1,uj⟩uj∣∣∣xk+1 −

∑k
j=1 ⟨xk+1,uj⟩uj

∣∣∣
, (16.19)

where the denominator is not equal to zero because the xj form a basis, and so

xk+1 /∈ span (x1, · · · ,xk) = span (u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span (u1, · · · ,uk,xk+1) = span (x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span (u1, · · · ,uk,uk+1) which is seen easily by solving (16.19) for xk+1 and it follows

span (x1, · · · ,xk,xk+1) = span (u1, · · · ,uk,uk+1) .

If l ≤ k,

⟨uk+1,ul⟩ = C


⟨xk+1,ul⟩ −

k∑

j=1

⟨xk+1,uj⟩ ⟨uj ,ul⟩




= C


⟨xk+1,ul⟩ −

k∑

j=1

⟨xk+1,uj⟩ δlj




= C (⟨xk+1,ul⟩ − ⟨xk+1,ul⟩) = 0.
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The vectors, {uj}nj=1 , generated in this way are therefore orthonormal because each vector has unit
length. �

As in the case of Fn, if you have a finite dimensional subspace of an inner product space, you
can begin with a basis and then apply the Gram Schmidt process above to obtain an orthonormal
basis.

There is nothing wrong with the above algorithm, but when you use it, it tends to get pretty
intricate and it is easy to get lost in the details. There is a way to simplify it to produce fewer
steps using matrices. I will illustrate in the case of three vectors. Say {u1,u2,u3} is linearly
independent and you wish to find an orthonormal set {v1,v2,v3} which has the same span such
that span (u1, · · · ,uk) = span (v1, · · · ,vk) for each k = 1, 2, 3. Then you would have

(
v1 v2 v3

)
=
(
u1 u2 u3

)
R

where R is an upper triangular matrix. Then

δjk = (vj ,vk) =

(
n∑

r=1

urRrj ,
n∑

s=1

usRsk

)

=
∑

r,s

Rrj ⟨ur,us⟩Rsk

Let G be the matrix whose rs entry is ⟨ur,us⟩ . This is called the Grammian matrix. Then the
above reduces to the following matrix equation.

I = RTGR

Taking inverses of both sides yields

I = R−1G−1
(
RT
)−1

Then it follows that
RRT = G−1. (16.20)

Example 16.5.10 Let the real inner product space V consist of the continuous functions defined
on [0, 1] with the inner product given by

⟨f, g⟩ ≡
∫ 1

0

f (x) g (x) dx

and consider the functions (vectors)
{
1, x, x2, x3

}
. Show this is a linearly independent set of vectors

and obtain an orthonormal set of vectors having the same span.

First, why is this a linearly independent set of vectors? This follows easily from Problem 15 on
Page 346. You consider the Wronskian of these functions.

det




1 x x2 x3

0 1 2x 3x2

0 0 2 6x
0 0 0 6


 ̸= 0.

Therefore, the vectors are linearly independent. Now following the above procedure with matrices,
let

R =




a1 a2 a3 a4
0 a5 a6 a7
0 0 a8 a9
0 0 0 a10



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Also it is necessary to compute the Grammian.




∫ 1

0
dx

∫ 1

0
xdx

∫ 1

0
x2dx

∫ 1

0
x3dx∫ 1

0
xdx

∫ 1

0
x2dx

∫ 1

0
x3dx

∫ 1

0
x4dx∫ 1

0
x2dx

∫ 1

0
x3dx

∫ 1

0
x4dx

∫ 1

0
x5dx∫ 1

0
x3dx

∫ 1

0
x4dx

∫ 1

0
x5dx

∫ 1

0
x6dx


 =




1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7




You also need the inverse of this Grammian. However, a computer algebra system can provide this
right away.

G−1 =




16 −120 240 −140
−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800




Now it just remains to find the ai.




a1 a2 a3 a4
0 a5 a6 a7
0 0 a8 a9
0 0 0 a10







a1 a2 a3 a4
0 a5 a6 a7
0 0 a8 a9
0 0 0 a10




T

=




a21 + a22 + a23 + a24 a2a5 + a3a6 + a4a7 a3a8 + a4a9 a4a10
a2a5 + a3a6 + a4a7 a25 + a26 + a27 a6a8 + a7a9 a7a10

a3a8 + a4a9 a6a8 + a7a9 a28 + a29 a9a10
a4a10 a7a10 a9a10 a210


 =




16 −120 240 −140
−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800




Thus you can take (There is more than one solution.)

a10 =
√
2800 = 20

√
7, a9 = −30

√
7, a8 = 6

√
5, a7 = 12

√
7, a6 = −6

√
5

a5 = 2
√
3, a4 = −

√
7, a3 =

√
5, a2 = −

√
3, a1 = 1

Thus the desired orthonormal basis is given by

(
1 x x2 x3

)



1 −
√
3

√
5 −

√
7

0 2
√
3 −6

√
5 12

√
7

0 0 6
√
5 −30

√
7

0 0 0 20
√
7




which yields

1, 2
√
3x−

√
3, 6

√
5x2 − 6

√
5x+

√
5, 20

√
7x3 − 30

√
7x2 + 12

√
7x−

√
7

16.5.4 Approximation And Least Squares

Let V be an inner product space and let U be a finite dimensional subspace. Given y ∈ V, how can
you find the vector of U which is closest to y out of all such vectors in U? Does there even exist
such a closest vector? The following picture is suggestive of the conclusion of the following lemma.
It turns out that pictures like this do not mislead when you are dealing with inner product spaces
in any number of dimensions.
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Uw

y

z

Note that in the picture, z is a point in U and also w is a point of U . The following lemma states
that for z to be closest to y out of all vectors in U, the vector from z to y should be perpendicular to
any vectorw ∈ U. Since U is a subspace, this is the same as saying that the vector −→zy is perpendicular
to the vector −→zw which is the situation illustrated by the above picture.

Lemma 16.5.11 Suppose y ∈ V, an inner product space and U is a subspace of V. Then

|y − z| ≤ |y −w|

for all w ∈ U if and only if, for all w ∈ U,

⟨y − z,w⟩ = 0. (16.21)

Furthermore, there is at most one z which minimizes |y −w| for w ∈ U .

Proof: First suppose condition (16.21). Letting w ∈ U, and using the properties of the inner
product and the definition of the norm,

|y −w|2 = |y − z+ z−w|2 = |y − z|2 + |z−w|2 + 2Re ⟨y − z, z−w⟩
= |y − z|2 + |z−w|2

It follows then that |y −w| is minimized when w = z.Next suppose z is a minimizer. Then pick
w ∈ U and let t ∈ R. Let θ ∈ C be such that |θ| = 1 and θ ⟨y − z,w⟩ = |⟨y − z,w⟩|. Then

t 7→
∣∣(y − z)+tθw

∣∣2

has a minimum when t = 0. But from the axioms of the inner product and definition of the norm,
this function of t equals

|y − z|2 + |tθw|2 + 2tRe
⟨
y − z,θw

⟩

= |y − z|2 + |tθw|2 + 2tRe θ ⟨y − z,w⟩
= |y − z|2 + t2 |w|2 + 2t |⟨y − z,w⟩|

Hence its derivative when t = 0 which is 2 |⟨y − z,w⟩| equals 0.
Suppose now that zi, i = 1, 2 both are minimizers. Then, as above,

|y − z1|2 = |y − z2|2 + |z1 − z2|2

and this is a contradiction unless z1 = z2 because |y − z1|2 = |y − z2|2. �
This z described above is called the orthogonal projection of y onto U . The picture suggests

why it is called this. The vector y − z is perpendicular to the vectors in U .
With the above lemma, here is a theorem about existence, uniqueness and properties of a mini-

mizer. The following theorem shows that the orthogonal projection is obtained by the linear trans-
formation given by the formula

Ty ≡
n∑

k=1

⟨y,uk⟩uk

Note that the formula as well as the geometric interpretation suggested in the above picture shows
that T 2 = T .
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Theorem 16.5.12 Let V be an inner product space and let U be an n dimensional subspace of V .
Then if y ∈ V is given, there exists a unique x ∈ U such that

|y − x| ≤ |y −w|

for all w ∈ U and in addition, there is a formula for x in terms of any orthonormal basis for
U, {u1, · · · ,un},

x =
n∑

k=1

⟨y,uk⟩uk

Proof: By Lemma 16.5.11 there is at most one minimizer and it is characterized by the condition

⟨y − x,w⟩ = 0

for all w ∈ U . Let {uk}nk=1 be an orthonormal basis for U . By the Gram Schmidt process, Lemma
16.5.9, there exists such an orthonormal basis. Now it only remains to verify that

⟨
y−

n∑

k=1

⟨y,uk⟩uk,w

⟩
= 0

for all w. Since {uk}nk=1 is a basis, it suffices to verify that

⟨
y−

n∑

k=1

⟨y,uk⟩uk,ul

⟩
= 0, all l = 1, 2, · · · , n

However, from the properties of the inner product,

⟨
y−

n∑

k=1

⟨y,uk⟩uk,ul

⟩
= ⟨y,ul⟩ −

n∑

k=1

⟨y,uk⟩ ⟨uk,ul⟩

= ⟨y,ul⟩ −
n∑

k=1

⟨y,uk⟩ δkl = ⟨y,ul⟩ − ⟨y,ul⟩ = 0. �

Note it follows that for any orthonormal basis {uk}nk=1 , the same unique vector x is obtained as

n∑

k=1

⟨y,uk⟩uk

and it is the unique minimizer of w 7→|y −w|. This is stated in the following corollary for the sake
of emphasis.

Corollary 16.5.13 Let V be an inner product space and let U be an n dimensional subspace of V.
Then for y given in V, and {uk}nk=1 , {vk}nk=1 two orthonormal bases for U,

n∑

k=1

⟨y,uk⟩uk =

n∑

k=1

⟨y,vk⟩vk

The scalars ⟨y,uk⟩ are called the Fourier coefficients.

Example 16.5.14 Let V denote the real inner product space consisting of continuous functions
defined on [0, 1] with the inner product

⟨f, g⟩ ≡
∫ 1

0

f (x) g (x) dx.

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



16.5. INNER PRODUCT SPACES 359

Let U = span
(
1, x, x2

)
. It is desired to find the vector (function) in U which is closest to sin in the

norm determined by this inner product. Thus it is desired to minimize

(∫ 1

0

|sin (x)− p (x)|2 dx
)1/2

out of all functions p contained in U .

By Example 16.5.10, an orthonormal basis for U is

{
1, 2

√
3x−

√
3, 6

√
5x2 − 6

√
5x+

√
5
}

Then by Theorem 16.5.12, the closest vector (function) in U to sin can be computed as follows. First
determine the Fourier coefficients.

∫ 1

0

1 sin (x) dx = 1− cos (1)

∫ 1

0

(
2
√
3x−

√
3
)
sin (x) dx =

√
3 (− cos 1 + 2 sin 1− 1)

∫ 1

0

(
6
√
5x2 − 6

√
5x+

√
5
)
sin (x) dx =

√
5 (11 cos 1 + 6 sin 1− 11)

Next, from Theorem 16.5.12, the closest point to sin is

(1− cos (1)) +
(√

3 (− cos 1 + 2 sin 1− 1)
)(

2
√
3x−

√
3
)

+
(√

5 (11 cos 1 + 6 sin 1− 11)
)(

6
√
5x2 − 6

√
5x+

√
5
)

Simplifying and approximating things like sin 1, this yields the following for the approximation to
sinx.

−0.235 46x2 + 1. 091 3x− 7. 464 9× 10−3

If this is graphed along with sinx for x ∈ [0, 1] the result is as follows.

One of the functions is represented by the solid line and the other by the dashed line. Now by
contrast, consider the Taylor series for sinx up to degree 2. This is just f (x) = x+ 0x2.

You see the difference. The approximation using the inner product norm, called mean square
approximation, attempts to approximate the given function on the whole interval while the Taylor
series approximation is only good for small x.
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16.5.5 Fourier Series

One of the most important applications of these ideas about approximation is to Fourier series.
Much more can be said about these than will be presented here. However, Theorem 16.5.12 is a
very useful framework for discussing these series.

For x ∈ R, define eix by the following formula

eix ≡ cosx+ i sinx

The reason for defining it this way is that ei0 = 1, and
(
eix
)′

= ieix if you use this definition. Also
it follows from the trigonometry identities that

ei(x+y) = eixeiy

This is because
eixeiy = (cosx+ i sinx) (cos y + i sin y)

= cosx cos y − sinx sin y + i (sinx cos y + cosx sin y)

= cos (x+ y) + i sin (x+ y) = ei(x+y)

In addition,
eix = e−ix

because
eix = cosx− i sinx = cos (−x) + i sin (−x) = e−ix

It follows that the functions 1√
2π
eikx for

k ∈ {−n,− (n− 1) , · · · ,−1, 0, 1, · · · , (n− 1) , n} ≡ In

form an orthonormal set in V, the inner product space of continuous functions defined on [−π, π]
with the inner product given by ∫ π

−π

f (x) g (x)dx ≡ ⟨f, g⟩ .

I will verify this now. Let k, l be two integers in In, k ̸= l

∫ π

−π

eikxeilxdx =

∫ π

−π

ei(k−l)xdx =
ei(k−l)x

i (k − l)
|π−π

= cos (k − l)π − cos (k − l) (−π) = 0

Also ∫ π

−π

1√
2π
eikx

1√
2π
eikxdx =

1

2π

∫ π

−π

e0xdx = 1.

Example 16.5.15 Let V be the inner product space of piecewise continuous functions defined on
[−π, π] and let U denote the span of the functions (vectors)

{
eikx

}n
k=−n

. Let

f (x) =

{
1 if x ≥ 0
−1 if x < 0

Find the vector of U which is closest to f in the mean square sense (In the norm defined by this
inner product).
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First of all, you need to find the Fourier coefficients. Since x 7→ cos (x) is even and x 7→ sin (x)
is odd, ∫ π

−π

f (x)
1√
2π
e−ikxdx =

−i2√
2π

∫ π

0

sin (−kx) dx

=
−i

√
2√
π

1− cos (kπ)

k
,

∫ π

−π

f (x) dx = 0.

Therefore, the best approximation is

n∑

k=−n

( −i√
π

1− cos (kπ)

k

) √
2√
2π
eikx

The term for k can be combined with the term for −k to yield

( −i√
π

1− cos (kπ)

k

) √
2√
2π

(
eikx − e−ikx

)
=

( −i√
π

1− cos (kπ)

k

) √
2√
2π

(2i sin kx)

=

(
2

π

1− cos (kπ)

k

)
sin kx

The terms when k is even are all 0. Therefore, the above reduces to

4

π

n∑

k=1

(
1

2k − 1

)
sin (2k − 1)x

In the case where n = 4, the graph of the function f being approximated along with the above
function which is approximating it are as shown in the following picture.

This sum which delivers the closest point in U will be denoted by Snf.
Note how the approximate function, closest in the mean square norm, is not equal to the given

function at very many points but is trying to be close to it across the entire interval [−π, π], except
for a small interval centered at 0. You might try doing similar graphs on a calculator or computer
in which you take larger and larger values of n. What will happen is that there will be a little
bump near the point of discontinuity which won’t go away, but this little bump will get thinner and
thinner. The reason this must happen is roughly because the functions in the sum are continuous
and the function being approximated is not. Therefore, convergence cannot take place uniformly.
This is all I will say about these considerations because this is not an analysis book. See Problem
20 below for a discussion of where the Fourier series does converge at jumps.

16.5.6 The Discreet Fourier Transform

Everything done above for the Fourier series on [−π, π] could have been done just as easily on [0, 2π]
because all the functions are periodic of period 2π. Thus, for f a function defined on [0, 2π] , you
could consider the partial sums of the Fourier series on [0, 2π]

n∑

k=−n

ake
ikx
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where

ak =
1

2π

∫ 2π

0

f (y) e−ikydy

and all the results of the last section continue to apply except now it is on the new interval. This is
done to make the presentation of what follows easier to write.

The idea is that maybe you don’t know what the function f is at all points, only at certain points

xj = j
2π

N
, j = 0, 1, · · · , N − 1

Then instead of the integral given above, you could write a Riemann sum which approximates it.
I will simply write the left Riemann sum. This yields the approximation bk for ak. Assuming f is
continuous, the approximation would improve as N → ∞.

bk =
1

2π

N−1∑

j=0

f

(
j
2π

N

)
e−ik(j 2π

N ) 2π

N

=
1

N

N−1∑

j=0

(
e−i 2π

N

)kj
yj

where yj is defined to be the value of the function at xj . This is called the discreet Fourier transform.

In terms of matrix multiplication, let ωN = e−i 2π
N . Then




b−(N−1)

...
b−1

b0
b1
...

bN−1




=
1

N




1 (ωN )
N−1 · · · (ωN )

(N−1)(N−1)

...
...

...

1 ωN · · · (ωN )
(N−1)

1 1 · · · 1

1 ωN · · · ω
(N−1)
N

...
...

...

1 ωN−1
N · · · ω

(N−1)(N−1)
N







y0
y1
...

yN−1




Thus you can find these approximate values by matrix multiplication.

Example 16.5.16 Suppose you have the following table of values for the function f.




0 1
π/2 2
π −1

3π/2 1
2π 2




Note that the above only uses the first four values.

In this case, N = 4 and so ωN = e−i(π/2) = −i. Then the approximate Fourier coefficients are
given by 



b−3

b−2

b−1

b0
b1
b2
b3




=
1

4




1 i3 i6 i9

1 i2
(
i2
)2 (

i2
)3

1 i i2 i3

1 1 1 1
1 −i −1 i

1 (−i)2 (−i)4 (−i)6
1 (−i)3 (−i)6 (−i)9







1
2
−1
1



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=
1

4




1 −i −1 i
1 −1 1 −1
1 i −1 −i
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







1
2
−1
1


 =

1

4




2− i
−3
2 + i
3

2− i
−3
2 + i




It follows that the approximate Fourier series for the given function is

1

4

(
(2− i) e−3ix + (−3) e−2ix + (2 + i) e−ix + 3 + (2− i) eix + (−3) e2ix + (2 + i) e3ix

)

This simplifies to

3

4
+ 2

(
1

2
cosx− 1

4
sinx

)
− 3

2
cos (2x) + 2

(
1

2
cos 3x− 1

4
sin 3x

)

If you graph this, it will not do all that well in approximating some functions which have the given
values at the given points. This is not surprising since only four points were considered. This is
why in practice, people like to use a large number of points and when you do, the computations
become sufficiently long that a special algorithm was developed for doing them. It is called the fast
Fourier transform. So when you see this mentioned, this is what it is about, efficiently computing the
discreet Fourier transform which can be thought of as a way to approximate the Fourier coefficients
based on incomplete information for a given function.

16.6 Exercises

1. Verify that Examples 16.5.1 - 16.5.4 are each inner product spaces.

2. In each of the examples 16.5.1 - 16.5.4 write the Cauchy Schwarz inequality.

3. Verify (16.16) and (16.17).

4. Consider the Cauchy Schwarz inequality. Show that it still holds under the assumptions
⟨u,v⟩ = ⟨v,u⟩, ⟨(au+ bv) , z⟩ = a ⟨u, z⟩+ b ⟨v, z⟩ , and ⟨u,u⟩ ≥ 0. Thus it is not necessary to
say that ⟨u,u⟩ = 0 only if u = 0. It is enough to simply state that ⟨u,u⟩ ≥ 0.

5. Consider the integers modulo a prime, Zp. This is a field of scalars. Now let the vector space
be (Zp)

n
where n ≥ p. Define now

⟨z,w⟩ ≡
n∑

i=1

ziwi

Does this satisfy the axioms of an inner product? Does the Cauchy Schwarz inequality hold
for this ⟨⟩? Does the Cauchy Schwarz inequality even make any sense?

6. If you only know that ⟨u,u⟩ ≥ 0 along with the other axioms of the inner product and if you
define |z| the same way, how do the conclusions of Theorem 16.5.7 change?

7. In an inner product space, an open ball is the set

B (x, r) ≡ {y : |y − x| < r} .

If z ∈ B (x, r) , show there exists δ > 0 such that B (z, δ) ⊆ B (x, r). In words, this says that
an open ball is open. Hint: This depends on the triangle inequality.
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8. Let V be the real inner product space consisting of continuous functions defined on [−1, 1]
with the inner product given by ∫ 1

−1

f (x) g (x) dx

Show that
{
1, x, x2

}
are linearly independent and find an orthonormal basis for the span of

these vectors.

9. A regular Sturm Liouville problem involves the differential equation for an unknown
function of x which is denoted here by y,

(p (x) y′)
′
+ (λq (x) + r (x)) y = 0, x ∈ [a, b]

and it is assumed that p (t) , q (t) > 0 for any t along with boundary conditions,

C1y (a) + C2y
′ (a) = 0

C3y (b) + C4y
′ (b) = 0

where
C2

1 + C2
2 > 0, and C2

3 + C2
4 > 0.

There is an immense theory connected to these important problems. The constant λ is called
an eigenvalue. Show that if y is a solution to the above problem corresponding to λ = λ1 and
if z is a solution corresponding to λ = λ2 ̸= λ1, then

∫ b

a

q (x) y (x) z (x) dx = 0. (16.22)

Hint: Do something like this:

(p (x) y′)
′
z + (λ1q (x) + r (x)) yz = 0,

(p (x) z′)
′
y + (λ2q (x) + r (x)) zy = 0.

Now subtract and either use integration by parts or show

(p (x) y′)
′
z − (p (x) z′)

′
y = ((p (x) y′) z − (p (x) z′) y)

′

and then integrate. Use the boundary conditions to show that y′ (a) z (a)−z′ (a) y (a) = 0 and
y′ (b) z (b)− z′ (b) y (b) = 0.

10. Using the above problem or standard techniques of calculus, show that

{√
2√
π
sin (nx)

}∞

n=1

are orthonormal with respect to the inner product

⟨f, g⟩ =
∫ π

0

f (x) g (x) dx

Hint: If you want to use the above problem, show that sin (nx) is a solution to the boundary
value problem

y′′ + n2y = 0, y (0) = y (π) = 0

11. Find S5f (x) where f (x) = x on [−π, π] . Then graph both S5f (x) and f (x) if you have access
to a system which will do a good job of it.
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12. Find S5f (x) where f (x) = |x| on [−π, π] . Then graph both S5f (x) and f (x) if you have
access to a system which will do a good job of it.

13. Find S5f (x) where f (x) = x2 on [−π, π] . Then graph both S5f (x) and f (x) if you have
access to a system which will do a good job of it.

14. Let V be the set of real polynomials defined on [0, 1] which have degree at most 2. Make this
into a real inner product space by defining

⟨f, g⟩ ≡ f (0) g (0) + f (1/2) g (1/2) + f (1) g (1)

Find an orthonormal basis and explain why this is an inner product.

15. Consider Rn with the following definition.

⟨x,y⟩ ≡
n∑

i=1

xiyii

Does this define an inner product? If so, explain why and state the Cauchy Schwarz inequality
in terms of sums.

16. From the above, for f a piecewise continuous function,

Snf (x) =
1

2π

n∑

k=−n

eikx
(∫ π

−π

f (y) e−ikydy

)
.

Show this can be written in the form

Snf (x) =

∫ π

−π

f (y)Dn (x− y) dy

where

Dn (t) =
1

2π

n∑

k=−n

eikt

This is called the Dirichlet kernel. Show that

Dn (t) =
1

2π

sin (n+ (1/2)) t

sin (t/2)

For V the vector space of piecewise continuous functions, define Sn : V 7→ V by

Snf (x) =

∫ π

−π

f (y)Dn (x− y) dy.

Show that Sn is a linear transformation. (In fact, Snf is not just piecewise continuous but
infinitely differentiable. Why?) Explain why

∫ π

−π
Dn (t) dt = 1. Hint: To obtain the formula,

do the following.

ei(t/2)Dn (t) =
1

2π

n∑

k=−n

ei(k+(1/2))t

ei(−t/2)Dn (t) =
1

2π

n∑

k=−n

ei(k−(1/2))t

Change the variable of summation in the bottom sum and then subtract and solve for Dn (t).
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17. ↑Let V be an inner product space and let U be a finite dimensional subspace with an orthonor-
mal basis {ui}ni=1. If y ∈ V, show

|y|2 ≥
n∑

k=1

|⟨y,uk⟩|2

Now suppose that {uk}∞k=1 is an orthonormal set of vectors of V . Explain why

lim
k→∞

⟨y,uk⟩ = 0.

When applied to functions, this is a special case of the Riemann Lebesgue lemma.

18. ↑Let f be any piecewise continuous function which is bounded on [−π, π] . Show, using the
above problem, that

lim
n→∞

∫ π

−π

f (t) sin (nt) dt = lim
n→∞

∫ π

−π

f (t) cos (nt) dt = 0

19. ↑∗Let f be a function which is defined on (−π, π]. The 2π periodic extension is given by
the formula f (x+ 2π) = f (x) . In the rest of this problem, f will refer to this 2π periodic
extension. Assume that f is piecewise continuous, bounded, and also that the following limits
exist

lim
y→0+

f (x+ y)− f (x+)

y
, lim

y→0+

f (x− y)− f (x+)

y

Here it is assumed that

f (x+) ≡ lim
h→0+

f (x+ h) , f (x−) ≡ lim
h→0+

f (x− h)

both exist at every point. The above conditions rule out functions where the slope taken
from either side becomes infinite. Justify the following assertions and eventually conclude that
under these very reasonable conditions

lim
n→∞

Snf (x) = (f (x+) + f (x−)) /2

the mid point of the jump. In words, the Fourier series converges to the midpoint of the jump
of the function.

Snf (x) =

∫ π

−π

f (x− y)Dn (y) dy

∣∣∣∣Snf (x)−
f (x+) + f (x−)

2

∣∣∣∣ =
∣∣∣∣
∫ π

−π

(
f (x− y)− f (x+) + f (x−)

2

)
Dn (y) dy

∣∣∣∣

=

∣∣∣∣
∫ π

0

f (x− y)Dn (y) dy +

∫ π

0

f (x+ y)Dn (y) dy

−
∫ π

0

(f (x+) + f (x−))Dn (y) dy

∣∣∣∣

≤
∣∣∣∣
∫ π

0

(f (x− y)− f (x−))Dn (y) dy

∣∣∣∣+
∣∣∣∣
∫ π

0

(f (x+ y)− f (x+))Dn (y) dy

∣∣∣∣

Now apply some trig. identities and use the result of Problem 18 to conclude that both of
these terms must converge to 0.
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20. ↑Using the Fourier series obtained in Problem 11 and the result of Problem 19 above, find an
interesting formula by examining where the Fourier series converges when x = π/2. Of course
you can get many other interesting formulas in the same way. Hint: You should get

Snf (x) =
n∑

k=1

2 (−1)
k+1

k
sin (kx)

21. Let V be an inner product space and let K be a convex subset of V . This means that if
x, z ∈ K, then the line segment x+ t (z− x) = (1− t)x+ tz is contained in K for all t ∈ [0, 1] .
Note that every subspace is a convex set. Let y ∈ V and let x ∈ K. Show that x is the closest
point to y out of all points in K if and only if for all w ∈ K,

Re ⟨y − x,w − x⟩ ≤ 0.

In Rn, a picture of the above situation where x is the closest point to y is as follows.

✲②K
w θ

y
x

The condition of the above variational inequality is that the angle θ shown in the picture is
larger than 90 degrees. Recall the geometric description of the dot product presented earlier.
See Page 41.

22. Show that in any inner product space the parallelogram identity holds.

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2

Next show that in a real inner product space, the polarization identity holds.

⟨x,y⟩ = 1

4

(
|x+ y|2 − |x− y|2

)
.

23. ∗This problem is for those who know about Cauchy sequences and completeness of Fp and
about closed sets. Suppose K is a closed nonempty convex subset of a finite dimensional
subspace U of an inner product space V . Let y ∈ V. Then show there exists a unique point
x ∈ K which is closest to y. Hint: Let

λ = inf {|y − z| : z ∈ K}

Let {xn} be a minimizing sequence,

|y − xn| → λ.

Use the parallelogram identity in the above problem to show that {xn} is a Cauchy sequence.
Now let {uk}pk=1 be an orthonormal basis for U . Say

xn =

p∑

k=1

cnkuk

Verify that for cn ≡
(
cn1 , · · · , cnp

)
∈ Fp

|xn − xm| = |cn − cm|
Fp .

Now use completeness of Fp and the assumption that K is closed to get the existence of x ∈ K
such that |x− y| = λ.
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24. ∗Let K be a closed nonempty convex subset of a finite dimensional subspace U of a real inner
product space V . (It is true for complex ones also.) For x ∈ V, denote by Px the unique
closest point to x in K. Verify that P is Lipschitz continuous with Lipschitz constant 1,

|Px− Py| ≤ |x− y| .

Hint: Use Problem 21.

25. ∗ This problem is for people who know about compactness. It is an analysis problem. If
you have only had the usual undergraduate calculus course, don’t waste your time with this
problem. Suppose V is a finite dimensional normed linear space. Recall this means that there
exists a norm ∥·∥ defined on V as described above,

∥v∥ ≥ 0 equals 0 if and only if v = 0

∥v + u∥ ≤ ∥u∥+ ∥v∥ , ∥αv∥ = |α| ∥v∥ .
Let |·| denote the norm which comes from Example 16.5.3, the inner product by decree. Show
|·| and ∥·∥ are equivalent. That is, there exist constants δ,∆ > 0 such that for all x ∈ V,

δ |x| ≤ ∥x∥ ≤ ∆ |x| .

In explain why every two norms on a finite dimensional vector space must be equivalent in the
above sense.
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Linear Transformations

17.1 Matrix Multiplication As A Linear Transformation

Definition 17.1.1 Let V and W be two finite dimensional vector spaces. A function, L which maps
V to W is called a linear transformation and L ∈ L (V,W ) if for all scalars α and β, and vectors
v,w,

L (αv+βw) = αL (v) + βL (w) .

These linear transformations are also called homomorphisms. If one of them is one to one, it is
called injective and if it is onto, it is called surjective. When a linear transformation is both one to
one and onto, it is called bijective. ,

An example of a linear transformation is familiar matrix multiplication. Let A = (aij) be an
m× n matrix. Then an example of a linear transformation L : Fn 7→ Fm is given by

(Lv)i ≡
n∑

j=1

aijvj .

Here

v ≡




v1
...
vn


 ∈ Fn.

17.2 L (V,W ) As A Vector Space

In what follows I will denote vectors in bold face. However, this does not mean they are in Fn.

Definition 17.2.1 Given L,M ∈ L (V,W ) define a new element of L (V,W ) , denoted by L +M
according to the rule

(L+M)v ≡ Lv +Mv.

For α a scalar and L ∈ L (V,W ) , define αL ∈ L (V,W ) by

αL (v) ≡ α (Lv) .

You should verify that all the axioms of a vector space hold for L (V,W ) with the above definitions
of vector addition and scalar multiplication. What about the dimension of L (V,W )?

Theorem 17.2.2 Let V and W be finite dimensional linear spaces of dimension n and m respec-
tively Then dim (L (V,W )) = mn.

369
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Proof: Let the two sets of bases be

{v1, · · · ,vn} and {w1, · · · ,wm}

for X and Y respectively. Let Eik ∈ L (V,W ) be the linear transformation defined on the basis,
{v1, · · · ,vn}, by

Eikvj ≡ wiδjk

where δik = 1 if i = k and 0 if i ̸= k. Thus

Eik

(
n∑

s=1

csvs

)
≡

n∑

s=1

csEikvs ≡
n∑

s=1

cswiδsk = ckwi.

Then let L ∈ L (V,W ). Since {w1, · · · ,wm} is a basis, there exist constants djk such that

Lvr =
m∑

j=1

djrwj

Also
m∑

j=1

n∑

k=1

djkEjk (vr) =
m∑

j=1

djrwj .

It follows that

L =
m∑

j=1

n∑

k=1

djkEjk

because the two linear transformations agree on a basis. Since L is arbitrary, this shows

{Eik : i = 1, · · · ,m, k = 1, · · · , n}

spans L (V,W ).
If ∑

i,k

dikEik = 0,

then

0 =
∑

i,k

dikEik (vl) =
m∑

i=1

dilwi

and so, since {w1, · · · ,wm} is a basis, dil = 0 for each i = 1, · · · ,m. Since l is arbitrary, this shows
dil = 0 for all i and l. Thus these linear transformations form a basis and this shows the dimension
of L (V,W ) is mn as claimed. �

17.3 Eigenvalues And Eigenvectors Of Linear Transforma-

tions

Here is a very useful theorem due to Sylvester.

Theorem 17.3.1 Let A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all vector spaces over a
field F. Suppose also that ker (A) and A (ker (BA)) are finite dimensional subspaces. Then

dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .
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Proof: If x ∈ ker (BA) , then Ax ∈ ker (B) and so A (ker (BA)) ⊆ ker (B) . The following picture
may help.

ker(B)

A(ker(BA))

ker(BA)

ker(A) ✲A

Now let {x1, · · · , xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis for A (ker (BA)) .
Take any z ∈ ker (BA) . Then Az =

∑m
i=1 aiAyi and so

A

(
z −

m∑

i=1

aiyi

)
= 0

which means z −∑m
i=1 aiyi ∈ ker (A) and so there are scalars bi such that

z −
m∑

i=1

aiyi =
n∑

j=1

bixi.

It follows span (x1, · · · , xn, y1, · · · , ym) ⊇ ker (BA) and so by the first part, (See the picture.)

dim (ker (BA)) ≤ n+m ≤ dim (ker (A)) + dim (ker (B)) �

Of course this result holds for any finite product of linear transformations by induction. One way
this is quite useful is in the case where you have a finite product of linear transformations

∏l
i=1 Li

all in L (V, V ) . Then

dim

(
ker

l∏

i=1

Li

)
≤

l∑

i=1

dim (kerLi)

and so if you can find a linearly independent set of vectors in ker
(∏l

i=1 Li

)
of size

l∑

i=1

dim (kerLi) ,

then it must be a basis for ker
(∏l

i=1 Li

)
.

Definition 17.3.2 Let {Vi}ri=1 be subspaces of V. Then

r∑

i=1

Vi

denotes all sums of the form
∑r

i=1 vi where vi ∈ Vi. If whenever

r∑

i=1

vi = 0, vi ∈ Vi, (17.1)

it follows that vi = 0 for each i, then a special notation is used to denote
∑r

i=1 Vi. This notation is

V1 ⊕ · · · ⊕ Vr

and it is called a direct sum of subspaces.
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Lemma 17.3.3 If V = V1 ⊕ · · · ⊕ Vr and if βi =
{
vi
1, · · · ,vi

mi

}
is a basis for Vi, then a basis for

V is {β1, · · · , βr}.
Proof: Suppose

∑r
i=1

∑mi

j=1 cijv
i
j = 0. then since it is a direct sum, it follows for each i,

mi∑

j=1

cijv
i
j = 0

and now since
{
vi
1, · · · ,vi

mi

}
is a basis, each cij = 0. �

Here is a useful lemma.

Lemma 17.3.4 Let Li be in L (V, V ) and suppose for i ̸= j, LiLj = LjLi and also Li is one to one
on ker (Lj) whenever i ̸= j. Then

ker

(
p∏

i=1

Li

)
= ker (L1)⊕+ · · ·+⊕ ker (Lp)

Here
∏p

i=1 Li is the product of all the linear transformations. A symbol like
∏

j ̸=i Lj is the product
of all of them but Li.

Proof: Note that since the operators commute, Lj : ker (Li) 7→ ker (Li). Here is why. If Liy = 0

so that y ∈ ker (Li) , then
LiLjy = LjLiy = Lj0 = 0

and so Lj : ker (Li) 7→ ker (Li). Suppose

p∑

i=1

vi = 0, vi ∈ ker (Li) ,

but some vi ̸= 0. Then do
∏

j ̸=i Lj to both sides. Since the linear transformations commute, this
results in ∏

j ̸=i

Ljvi = 0

which contradicts the assumption that these Lj are one to one and the observation that they map
ker (Li) to ker (Li). Thus if ∑

i

vi = 0, vi ∈ ker (Li)

then each vi = 0.
Let βi =

{
vi
1, · · · ,vi

mi

}
be a basis for ker (Li). Then from what was just shown and Lemma

17.3.3,
{
β1, · · · , βp

}
must be linearly independent and a basis for

ker (L1)⊕+ · · ·+⊕ ker (Lp) .

It is also clear that since these operators commute,

ker (L1)⊕+ · · ·+⊕ ker (Lp) ⊆ ker

(
p∏

i=1

Li

)

Therefore, by Sylvester’s theorem and the above,

dim

(
ker

(
p∏

i=1

Li

))
≤

p∑

j=1

dim (ker (Lj))

= dim (ker (L1)⊕+ · · ·+⊕ ker (Lp))

≤ dim

(
ker

(
p∏

i=1

Li

))
.
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Now in general, if W is a subspace of V, a finite dimensional vector space and the two have the same
dimension, then W = V . This is because W has a basis and if v is not in the span of this basis,
then v adjoined to the basis of W would be a linearly independent set so the dimension of V would
then be strictly larger than the dimension of W .

It follows

ker (L1)⊕+ · · ·+⊕ ker (Lp) = ker

(
p∏

i=1

Li

)
�

Here is a situation in which the above holds. ker (A− λiI)
r
is sometimes called a generalized

eigenspace. The following is an important result on generalized eigenspaces.

Theorem 17.3.5 Let V be a vector space of dimension n and A a linear transformation and suppose
{λ1, · · · , λk} are distinct scalars. Define for ri ∈ N

Vi = ker (A− λiI)
ri (17.2)

Then

ker

(
p∏

i=1

(A− λiI)
ri

)
= Vi ⊕ · · · ⊕ Vp. (17.3)

Proof: It is obvious the linear transformations (A− λiI)
ri commute. Now here is a claim.

Claim : Let µ ̸= λi, Then (A− µI)
m

: Vi 7→ Vi and is one to one and onto for every m ∈ N.
Proof: It is clear (A− µI)

m
maps Vi to Vi because if v ∈ Vi then (A− λiI)

ri v = 0. Conse-
quently,

(A− λiI)
ri (A− µI)

m
v = (A− µI)

m
(A− λiI)

ri v = (A− µI)
m
0 = 0

which shows that (A− µI)
m
v ∈ Vi.

It remains to verify (A− µI)
m

is one to one. This will be done by showing that (A− µI) is one to
one. Let w ∈ Vi and suppose (A− µI)w = 0 so that Aw = µw. Then for m ≡ ri, (A− λiI)

m
w = 0

and so by the binomial theorem,

(µ− λi)
m
w =

m∑

l=0

(
m

l

)
(−λi)m−l

µlw

m∑

l=0

(
m

l

)
(−λi)m−l

Alw = (A− λiI)
m
w = 0.

Therefore, since µ ̸= λi, it follows w = 0 and this verifies (A− µI) is one to one. Thus (A− µI)
m

is also one to one on Vi. Letting
{
ui
1, · · · ,ui

rk

}
be a basis for Vi, it follows

{
(A− µI)

m
ui
1, · · · , (A− µI)

m
ui
rk

}

is also a basis and so (A− µI)
m

is also onto. The desired result now follows from Lemma 17.3.4. �

Let V be a finite dimensional vector space with field of scalars C. For example, it could be a
subspace of Cn. Also suppose A ∈ L (V, V ) . Does A have eigenvalues and eigenvectors just like the
case where A is a n× n matrix?

Theorem 17.3.6 Let V be a nonzero finite dimensional vector space of dimension n. Suppose also
the field of scalars equals C.1 Suppose A ∈ L (V, V ) . Then there exists v ̸= 0 and λ ∈ C such that

Av = λv.

1All that is really needed is that the minimal polynomial can be completely factored in the given field. The complex

numbers have this property from the fundamental theorem of algebra.
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Proof: Consider the linear transformations, I, A,A2, · · · , An2

. There are n2 + 1 of these trans-
formations and so by Theorem 17.2.2 the set is linearly dependent. Thus there exist constants,
ci ∈ C such that

c0I +
n2∑

k=1

ckA
k = 0.

This implies there exists a polynomial, q (λ) which has the property that q (A) = 0. In fact, q (λ) ≡
c0 +

∑n2

k=1 ckλ
k. Dividing by the leading term, it can be assumed this polynomial is of the form

λm + cm−1λ
m−1 + · · · + c1λ + c0, a monic polynomial. Now consider all such monic polynomials,

q such that q (A) = 0 and pick one which has the smallest degree. This is called the minimal
polynomial and will be denoted here by p (λ) . By the fundamental theorem of algebra, p (λ) is of
the form

p (λ) =
m∏

k=1

(λ− λk) .

where some of the λk might be repeated. Thus, since p has minimal degree,

m∏

k=1

(A− λkI) = 0, but
m−1∏

k=1

(A− λkI) ̸= 0.

Therefore, there exists u ̸= 0 such that

v ≡
(

m−1∏

k=1

(A− λkI)

)
(u) ̸= 0.

But then

(A− λmI)v = (A− λmI)

(
m−1∏

k=1

(A− λkI)

)
(u) = 0. �

As a corollary, it is good to mention that the minimal polynomial just discussed is unique.

Corollary 17.3.7 Let A ∈ L (V, V ) where V is an n dimensional vector space, the field of scalars
being F. Then there exists a polynomial q (λ) having coefficients in F such that q (A) = 0. Letting
p (λ) be the monic polynomial having smallest degree such that p (A) = 0, it follows that p (λ) is
unique.

Proof: The existence of p (λ) follows from the above theorem. Suppose then that p1 (λ) is
another one. That is, it has minimal degree of all polynomials q (λ) satisfying q (A) = 0 and is
monic. Then by Lemma 16.3.3 there exists r (λ) which is either equal to 0 or has degree smaller
than that of p (λ) and a polynomial l (λ) such that

p1 (λ) = p (λ) l (λ) + r (λ)

By assumption, r (A) = 0. Therefore, r (λ) = 0. Also by assumption, p1 (λ) and p (λ) have the same
degree and so l (λ) is a scalar. Since p1 (λ) and p (λ) are both monic, it follows this scalar must
equal 1. This shows uniqueness. �

Corollary 17.3.8 In the above theorem, each of the scalars λk has the property that there exists a
nonzero v such that (A− λiI)v = 0. Furthermore the λi are the only scalars with this property.

Proof: For the first claim, just factor out (A− λiI) instead of (A− λmI) . Next suppose

(A− µI)v = 0
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for some µ and v ̸= 0. Then

0 =

m∏

k=1

(A− λkI)v =

m−1∏

k=1

(A− λkI)




=µv︷︸︸︷
Av − λmv




= (µ− λm)

(
m−1∏

k=1

(A− λkI)

)
v

= (µ− λm)

(
m−2∏

k=1

(A− λkI)

)
(Av − λm−1v)

= (µ− λm) (µ− λm−1)

(
m−2∏

k=1

(A− λkI)

)

continuing this way yields

=

m∏

k=1

(µ− λk)v,

a contradiction unless µ = λk for some k. �
Therefore, these are eigenvectors and eigenvalues with the usual meaning. This leads to the

following definition.

Definition 17.3.9 For A ∈ L (V, V ) where dim (V ) = n, the scalars, λk in the minimal polynomial,

p (λ) =
m∏

k=1

(λ− λk) ≡
p∏

k=1

(λ− λk)
rk

are called the eigenvalues of A. In the last expression, λk is a repeated root which occurs rk times.
The collection of eigenvalues of A is denoted by σ (A). The generalized eigenspaces are

ker (A− λkI)
rk ≡ Vk.

Theorem 17.3.10 In the situation of the above definition,

V = V1 ⊕ · · · ⊕ Vp

That is, the vector space equals the direct sum of its generalized eigenspaces.

Proof: Since V = ker (
∏p

k=1 (A− λkI)
rk) , the conclusion follows from Theorem 17.3.5. �

17.4 Block Diagonal Matrices

In this section the vector space will be Cn and the linear transformations will be those which result
by multiplication by n× n matrices.

Definition 17.4.1 Let A and B be two n× n matrices. Then A is similar to B, written as A ∼ B
when there exists an invertible matrix S such that A = S−1BS.

Theorem 17.4.2 Let A be an n × n matrix. Letting λ1, λ2, · · · , λr be the distinct eigenvalues of
A,arranged in some order, there exist square matrices P1, · · · , Pr such that A is similar to the block
diagonal matrix

P =




P1 · · · 0
...

. . .
...

0 · · · Pr



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in which Pk has the single eigenvalue λk. Denoting by rk the size of Pk it follows that rk equals the
dimension of the generalized eigenspace for λk. Furthermore, if S is the matrix satisfying

S−1AS = P,

then S is of the form (
B1 · · · Br

)

where Bk =
(
uk
1 · · · uk

rk

)
in which the columns,

{
uk
1 , · · · ,uk

rk

}
= Dk constitute a basis for Vλk

.

Proof: By Theorem 17.3.9 and Lemma 17.3.3,

Cn = Vλ1
⊕ · · · ⊕ Vλk

and a basis for Cn is {D1, · · · , Dr} where Dk is a basis for Vλk
, ker (A− λkI)

rk .
Let

S =
(
B1 · · · Br

)

where the Bi are the matrices described in the statement of the theorem. Then S−1 must be of the
form

S−1 =




C1

...
Cr




where CiBi = Iri×ri . Also, if i ̸= j, then CiABj = 0 the last claim holding because A : Vλj
7→ Vλj

so the columns of ABj are linear combinations of the columns of Bj and each of these columns is
orthogonal to the rows of Ci since CiBj = 0 if i ̸= j. Therefore,

S−1AS =




C1

...
Cr


A

(
B1 · · · Br

)

=




C1

...
Cr



(
AB1 · · · ABr

)

=




C1AB1 0 · · · 0
0 C2AB2 · · · 0
... 0

. . . 0
0 · · · 0 CrABr




and CrkABrk is an rk × rk matrix.
What about the eigenvalues of CrkABrk? The only eigenvalue of A restricted to Vλk

is λk because
if Ax = µx for some x ∈ Vλk

and µ ̸= λk, then

(A− λkI)
rk x = (A− µI + (µ− λk) I)

rk x

=

rk∑

j=0

(
rk
j

)
(µ− λk)

rk−j
(A− µI)

j
x

= (µ− λk)
rk x ̸= 0

contrary to the assumption that x ∈ Vλk
. Suppose then that CrkABrkx = λx where x ̸= 0. Why is

λ = λk? Let y = Brkx so y ∈ Vλk
. Then

S−1Ay = S−1AS




0
...
x
...
0




=




0
...

CrkABrkx
...
0




= λ




0
...
x
...
0



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and so

Ay = λS




0
...
x
...
0




= λy.

Therefore, λ = λk because, as noted above, λk is the only eigenvalue of A restricted to Vλk
. Now

let Pk = CrkABrk . �

The above theorem contains a result which is of sufficient importance to state as a corollary.

Corollary 17.4.3 Let A be an n×n matrix and let Dk denote a basis for the generalized eigenspace
for λk. Then {D1, · · · , Dr} is a basis for Cn.

More can be said. Recall Theorem 13.2.11 on Page 262. From this theorem, there exist unitary
matrices, Uk such that U∗

kPkUk = Tk where Tk is an upper triangular matrix of the form




λk · · · ∗
...

. . .
...

0 · · · λk


 ≡ Tk

Now let U be the block diagonal matrix defined by

U ≡




U1 · · · 0
...

. . .
...

0 · · · Ur


 .

By Theorem 17.4.2 there exists S such that

S−1AS =




P1 · · · 0
...

. . .
...

0 · · · Pr


 .

Therefore,

U∗SASU =




U∗
1 · · · 0
...

. . .
...

0 · · · U∗
r







P1 · · · 0
...

. . .
...

0 · · · Pr







U1 · · · 0
...

. . .
...

0 · · · Ur




=




U∗
1P1U1 · · · 0
...

. . .
...

0 · · · U∗
r PrUr


 =




T1 · · · 0
...

. . .
...

0 · · · Tr


 .

This proves most of the following corollary of Theorem 17.4.2.

Corollary 17.4.4 Let A be an n × n matrix. Then A is similar to an upper triangular, block
diagonal matrix of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr




where Tk is an upper triangular matrix having only λk on the main diagonal. The diagonal blocks
can be arranged in any order desired. If Tk is an mk ×mk matrix, then

mk = dim (ker (A− λkI)
rk)
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where the minimal polynomial of A is
p∏

k=1

(λ− λk)
rk

Furthermore, mk is the multiplicity of λk as a zero of the characteristic polynomial of A.

Proof: The only thing which remains is the assertion that mk equals the multiplicity of λk as
a zero of the characteristic polynomial. However, this is clear from the observation that since T is
similar to A they have the same characteristic polynomial because

det (A− λI) = det
(
S (T − λI)S−1

)

= det (S) det
(
S−1

)
det (T − λI)

= det
(
SS−1

)
det (T − λI)

= det (T − λI)

and the observation that since T is upper triangular, the characteristic polynomial of T is of the
form

r∏

k=1

(λk − λ)
mk . �

The above corollary has tremendous significance especially if it is pushed even further resulting
in the Jordan Canonical form. This form involves still more similarity transformations resulting in
an especially revealing and simple form for each of the Tk, but the result of the above corollary is
sufficient for most applications.

It is significant because it enables one to obtain great understanding of powers of A by using the
matrix T. From Corollary 17.4.4 there exists an n× n matrix S2 such that

A = S−1TS.

Therefore, A2 = S−1TSS−1TS = S−1T 2S and continuing this way, it follows

Ak = S−1T kS.

where T is given in the above corollary. Consider T k. By block multiplication,

T k =




T k
1 0

. . .

0 T k
r


 .

The matrix Ts is an ms ×ms matrix which is of the form

Ts =




α · · · ∗
...

. . .
...

0 · · · α


 (17.4)

which can be written in the form
Ts = D +N

forD a multiple of the identity and N an upper triangular matrix with zeros down the main diagonal.
Therefore, by the Cayley Hamilton theorem, Nms = 0 because the characteristic equation for N is
just λms = 0. Such a transformation is called nilpotent. You can see Nms = 0 directly also, without
having to use the Cayley Hamilton theorem. Now since D is just a multiple of the identity, it follows

2The S here is written as S−1 in the corollary.
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that DN = ND. Therefore, the usual binomial theorem may be applied and this yields the following
equations for k ≥ ms.

T k
s = (D +N)

k
=

k∑

j=0

(
k

j

)
Dk−jN j

=

ms∑

j=0

(
k

j

)
Dk−jN j , (17.5)

the third equation holding because Nms = 0. Thus T k
s is of the form

T k
s =




αk · · · ∗
...

. . .
...

0 · · · αk


 .

Lemma 17.4.5 Suppose T is of the form Ts described above in (17.4) where the constant α, on the
main diagonal, is less than one in absolute value. Then

lim
k→∞

(
T k
)
ij
= 0.

Proof: From (17.5), it follows that for large k, and j ≤ ms,

(
k

j

)
≤ k (k − 1) · · · (k −ms + 1)

ms!
.

Therefore, letting C be the largest value of
∣∣∣
(
N j
)
pq

∣∣∣ for 0 ≤ j ≤ ms,

∣∣∣
(
T k
)
pq

∣∣∣ ≤ msC

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

which converges to zero as k → ∞. This is most easily seen by applying the ratio test to the series

∞∑

k=ms

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

and then noting that if a series converges, then the kth term converges to zero. �

17.5 The Matrix Of A Linear Transformation

If V is an n dimensional vector space and {v1, · · · ,vn} is a basis for V, there exists a linear map

q : Fn 7→ V

defined as

q (a) ≡
n∑

i=1

aivi

where

a =
n∑

i=1

aiei,
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for ei the standard basis vectors for Fn consisting of

ei ≡




0
...
1
...
0




where the one is in the ith slot. It is clear that q defined in this way, is one to one, onto, and
linear. For v ∈ V, q−1 (v) is a list of scalars called the components of v with respect to the basis
{v1, · · · ,vn}.

Definition 17.5.1 Given a linear transformation L, mapping V to W, where

{v1, · · · ,vn}

is a basis of V and {w1, · · · ,wm} is a basis for W, an m × n matrix A = (aij)is called the matrix
of the transformation L with respect to the given choice of bases for V and W , if whenever v ∈ V,
then multiplication of the components of v by (aij) yields the components of Lv.

The following diagram is descriptive of the definition. Here qV and qW are the maps defined
above with reference to the bases, {v1, · · · ,vn} and {w1, · · · ,wm} respectively.

L
{v1, · · · ,vn} V → W {w1, · · · ,wm}

qV ↑ ◦ ↑ qW
Fn → Fm

A

(17.6)

Letting b ∈ Fn, this requires

∑

i,j

aijbjwi = L
∑

j

bjvj =
∑

j

bjLvj .

Now
Lvj =

∑

i

cijwi (17.7)

for some choice of scalars cij because {w1, · · · ,wm} is a basis for W. Hence

∑

i,j

aijbjwi =
∑

j

bj
∑

i

cijwi =
∑

i,j

cijbjwi.

It follows from the linear independence of {w1, · · · ,wm} that

∑

j

aijbj =
∑

j

cijbj

for any choice of b ∈ Fn and consequently

aij = cij

where cij is defined by (17.7). It may help to write (17.7) in the form

(
Lv1 · · · Lvn

)
=
(
w1 · · · wm

)
C =

(
w1 · · · wm

)
A (17.8)

where C = (cij) , A = (aij) .
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Example 17.5.2 Let
V ≡ { polynomials of degree 3 or less},
W ≡ { polynomials of degree 2 or less},

and L ≡ D where D is the differentiation operator. A basis for V is {1,x, x2, x3} and a basis for
W is {1, x, x2}.

What is the matrix of this linear transformation with respect to this basis? Using (17.8),
(
0 1 2x 3x2

)
=
(
1 x x2

)
C.

It follows from this that

C =




0 1 0 0
0 0 2 0
0 0 0 3


 .

Now consider the important case where V = Fn, W = Fm, and the basis chosen is the standard
basis of vectors ei described above. Let L be a linear transformation from Fn to Fm and let A be
the matrix of the transformation with respect to these bases. In this case the coordinate maps qV
and qW are simply the identity map and the requirement that A is the matrix of the transformation
amounts to

πi (Lb) = πi (Ab)

where πi denotes the map which takes a vector in Fm and returns the ith entry in the vector, the
ith component of the vector with respect to the standard basis vectors. Thus, if the components of
the vector in Fn with respect to the standard basis are (b1, · · · , bn) ,

b =
(
b1 · · · bn

)T
=
∑

i

biei,

then
πi (Lb) ≡ (Lb)i =

∑

j

aijbj .

What about the situation where different pairs of bases are chosen for V and W? How are the
two matrices with respect to these choices related? Consider the following diagram which illustrates
the situation.

Fn A2−→ Fm

q2 ↓ ◦ p2 ↓
V L−→ W

q1 ↑ ◦ p1 ↑
Fn A1−→ Fm

In this diagram qi and pi are coordinate maps as described above. From the diagram,

p−1
1 p2A2q

−1
2 q1 = A1,

where q−1
2 q1 and p−1

1 p2 are one to one, onto, and linear maps. Thus the effect of these maps is
identical to multiplication by a suitable matrix.

Definition 17.5.3 In the special case where V = W and only one basis is used for V = W, this
becomes

q−1
1 q2A2q

−1
2 q1 = A1.

Letting S be the matrix of the linear transformation q−1
2 q1 with respect to the standard basis vectors

in Fn,
S−1A2S = A1. (17.9)

When this occurs, A1 is said to be similar to A2 and A 7→ S−1AS is called a similarity transforma-
tion.
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Here is some terminology.

Definition 17.5.4 Let S be a set. The symbol, ∼ is called an equivalence relation on S if it satisfies
the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 17.5.5 [x] denotes the set of all elements of S which are equivalent to x and [x] is called
the equivalence class determined by x or just the equivalence class of x.

With the above definition one can prove the following simple theorem which you should do if
you have not seen it.

Theorem 17.5.6 Let ∼ be an equivalence class defined on a set, S and let H denote the set of
equivalence classes. Then if [x] and [y] are two of these equivalence classes, either x ∼ y and
[x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

Theorem 17.5.7 In the vector space of n× n matrices, define

A ∼ B

if there exists an invertible matrix S such that

A = S−1BS.

Then ∼ is an equivalence relation and A ∼ B if and only if whenever V is an n dimensional vector
space, there exists L ∈ L (V, V ) and bases {v1, · · · ,vn} and {w1, · · · ,wn} such that A is the matrix
of L with respect to {v1, · · · ,vn} and B is the matrix of L with respect to {w1, · · · ,wn}.

Proof: A ∼ A because S = I works in the definition. If A ∼ B , then B ∼ A, because

A = S−1BS

implies
B = SAS−1.

If A ∼ B and B ∼ C, then
A = S−1BS, B = T−1CT

and so
A = S−1T−1CTS = (TS)

−1
CTS

which implies A ∼ C. This verifies the first part of the conclusion.
Now let V be an n dimensional vector space, A ∼ B and pick a basis for V,

{v1, · · · ,vn}.

Define L ∈ L (V, V ) by

Lvi ≡
∑

j

ajivj

where A = (aij) . Then if B = (bij) , and S = (sij) is the matrix which provides the similarity
transformation,

A = S−1BS,
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between A and B, it follows that

Lvi =
∑

r,s,j

sirbrs
(
s−1
)
sj
vj . (17.10)

Now define
wi ≡

∑

j

(
s−1
)
ij
vj .

Then from (17.10), ∑

i

(
s−1
)
ki
Lvi =

∑

i,j,r,s

(
s−1
)
ki
sirbrs

(
s−1
)
sj
vj

and so
Lwk =

∑

s

bksws.

This proves the theorem because the if part of the conclusion was established earlier. �

What if the linear transformation consists of multiplication by a matrix A and you want to find
the matrix of this linear transformation with respect to another basis? Is there an easy way to do
it? The answer is yes.

Proposition 17.5.8 Let A be an m × n matrix and let L be the linear transformation which is
defined by

L

(
n∑

k=1

xkek

)
≡

n∑

k=1

(Aek)xk ≡
m∑

i=1

n∑

k=1

Aikxkei

In simple language, to find Lx, you multiply on the left of x by A. Then the matrix M of this linear
transformation with respect to the bases {u1, · · · ,un} for Fn and {w1, · · · ,wm} for Fm is given by

M =
(
w1 · · · wm

)−1
A
(
u1 · · · un

)

where
(
w1 · · · wm

)
is the m×m matrix which has wj as its jth column.

Proof: Consider the following diagram.

L
{u1, · · · ,un} Fn → Fm {w1, · · · ,wm}

qV ↑ ◦ ↑ qW
Fn → Fm

M

Here the coordinate maps are defined in the usual way. Thus

qV
(
x1 · · · xn

)T ≡
n∑

i=1

xiui.

Therefore, qV can be considered the same as multiplication of a vector in Fn on the left by the
matrix (

u1 · · · un

)
.

Similar considerations apply to qW . Thus it is desired to have the following for an arbitrary x ∈ Fn.

A
(
u1 · · · un

)
x =

(
w1 · · · wn

)
Mx

Therefore, the conclusion of the proposition follows. �
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Definition 17.5.9 An n × n matrix A, is diagonalizable if there exists an invertible n × n matrix
S such that S−1AS = D, where D is a diagonal matrix. Thus D has zero entries everywhere except
on the main diagonal. Write diag (λ1 · · · , λn) to denote the diagonal matrix having the λi down the
main diagonal.

Which matrices are diagonalizable?

Theorem 17.5.10 Let A be an n×n matrix. Then A is diagonalizable if and only if Fn has a basis
of eigenvectors of A. In this case, S of Definition 17.5.9 consists of the n×n matrix whose columns
are the eigenvectors of A and D = diag (λ1, · · · , λn) .

Proof: Suppose first that Fn has a basis of eigenvectors, {v1, · · · ,vn} where Avi = λivi. Then

let S denote the matrix (v1 · · ·vn) and let S−1 ≡




uT
1
...
uT
n


 where uT

i vj = δij ≡
{

1 if i = j
0 if i ̸= j

. S−1

exists because S has rank n. Then from block multiplication,

S−1AS =




uT
1
...
uT
n


 (Av1 · · ·Avn)

=




uT
1
...
uT
n


 (λ1v1 · · ·λnvn)

=




λ1 0 · · · 0
0 λ2 0 · · ·
...

. . .
. . .

. . .

0 · · · 0 λn


 = D.

Next suppose A is diagonalizable so S−1AS = D ≡ diag (λ1, · · · , λn) . Then the columns of S
form a basis because S−1 is given to exist. It only remains to verify that these columns of A are
eigenvectors. But letting S = (v1 · · ·vn) , AS = SD and so (Av1 · · ·Avn) = (λ1v1 · · ·λnvn) which
shows that Avi = λivi. �

It makes sense to speak of the determinant of a linear transformation as described in the following
corollary.

Corollary 17.5.11 Let L ∈ L (V, V ) where V is an n dimensional vector space and let A be the
matrix of this linear transformation with respect to a basis on V. Then it is possible to define

det (L) ≡ det (A) .

Proof: Each choice of basis for V determines a matrix for L with respect to the basis. If A and
B are two such matrices, it follows from Theorem 17.5.7 that

A = S−1BS

and so
det (A) = det

(
S−1

)
det (B) det (S) .

But
1 = det (I) = det

(
S−1S

)
= det (S) det

(
S−1

)

and so
det (A) = det (B) �
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Definition 17.5.12 Let A ∈ L (X,Y ) where X and Y are finite dimensional vector spaces. Define
rank (A) to equal the dimension of A (X) .

The following theorem explains how the rank of A is related to the rank of the matrix of A.

Theorem 17.5.13 Let A ∈ L (X,Y ). Then rank (A) = rank (M) where M is the matrix of A taken
with respect to a pair of bases for the vector spaces X, and Y.

Proof: Recall the diagram which describes what is meant by the matrix of A. Here the two bases
are as indicated.

{v1, · · · , vn} X A−→ Y {w1, · · · , wm}
qX ↑ ◦ ↑ qY
Fn M−→ Fm

Let {z1, · · · , zr} be a basis for A (X) . Then since the linear transformation, qY is one to one and
onto,

{
q−1
Y z1, · · · , q−1

Y zr
}
is a linearly independent set of vectors in Fm. Let Aui = zi. Then

Mq−1
X ui = q−1

Y zi

and so the dimension of M (Fn) ≥ r. Now if M (Fn) < r then there exists

y ∈M (Fn) \ span
{
q−1
Y z1, · · · , q−1

Y zr
}
.

But then there exists x ∈ Fn with Mx = y. Hence

y =Mx = q−1
Y AqXx ∈ span

{
q−1
Y z1, · · · , q−1

Y zr
}

a contradiction. �

The following result is a summary of many concepts.

Theorem 17.5.14 Let L ∈ L (V, V ) where V is a finite dimensional vector space. Then the follow-
ing are equivalent.

1. L is one to one.

2. L maps a basis to a basis.

3. L is onto.

4. det (L) ̸= 0

5. If Lv = 0 then v = 0.

Proof: Suppose first L is one to one and let {vi}ni=1 be a basis. Then if
∑n

i=1 ciLvi = 0 it
follows L (

∑n
i=1 civi) = 0 which means that since L (0) = 0, and L is one to one, it must be the case

that
∑n

i=1 civi = 0. Since {vi} is a basis, each ci = 0 which shows {Lvi} is a linearly independent
set. Since there are n of these, it must be that this is a basis.

Now suppose 2.). Then letting {vi} be a basis, and y ∈ V, it follows from part 2.) that there are
constants, {ci} such that y =

∑n
i=1 ciLvi = L (

∑n
i=1 civi) . Thus L is onto. It has been shown that

2.) implies 3.).
Now suppose 3.). Then the operation consisting of multiplication by the matrix of L,ML, must

be onto. However, the vectors in Fn so obtained, consist of linear combinations of the columns of
ML. Therefore, the column rank of ML is n. By Theorem 8.5.7 this equals the determinant rank
and so det (ML) ≡ det (L) ̸= 0.

Now assume 4.) If Lv = 0 for some v ̸= 0, it follows that MLx = 0 for some x ̸= 0. Therefore,
the columns ofML are linearly dependent and so by Theorem 8.5.7, det (ML) = det (L) = 0 contrary
to 4.). Therefore, 4.) implies 5.).
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Now suppose 5.) and suppose Lv = Lw. Then L (v −w) = 0 and so by 5.), v−w = 0 showing
that L is one to one. �

Also it is important to note that composition of linear transformation corresponds to multipli-
cation of the matrices. Consider the following diagram.

X A−→ Y B−→ Z

qX ↑ ◦ ↑ qY ◦ ↑ qZ
Fn MA−−→ Fm MB−−→ Fp

where A and B are two linear transformations, A ∈ L (X,Y ) and B ∈ L (Y, Z) . Then B ◦ A ∈
L (X,Z) and so it has a matrix with respect to bases given on X and Z, the coordinate maps for
these bases being qX and qZ respectively. Then

B ◦A = qZMBq
−1
Y qYMAq

−1
X = qZMBMAq

−1
X .

But this shows that MBMA plays the role of MB◦A, the matrix of B ◦A. Hence the matrix of B ◦A
equals the product of the two matricesMA andMB . Of course it is interesting to note that although
MB◦A must be unique, the matrices, MB and MA are not unique, depending on the basis chosen
for Y .

Theorem 17.5.15 The matrix of the composition of linear transformations equals the product of
the matrices of these linear transformations.

17.5.1 Some Geometrically Defined Linear Transformations

This is a review of earlier material. If T is any linear transformation which maps Fn to Fm, there is
always an m× n matrix A with the property that

Ax = Tx (17.11)

for all x ∈ Fn. How does this relate to what is discussed above? In terms of the above diagram,

{e1, · · · , en} Fn T−→ Fm {e1, · · · , en}
qFn ↑ ◦ ↑ qFm

Fn M−→ Fm

where

qFn (x) ≡
n∑

i=1

xiei = x.

Thus those two maps are really just the identity map. Thus, to find the matrix of the linear
transformation T with respect to the standard basis vectors,

Tek =Mek

In other words, the kth column of M equals Tek as noted earlier. All the earlier considerations
apply. These considerations were just a specialization to the case of the standard basis vectors of
this more general notion which was just presented.

17.5.2 Rotations About A Given Vector

As an application, I will consider the problem of rotating counter clockwise about a given unit
vector which is possibly not one of the unit vectors in coordinate directions. First consider a pair of
perpendicular unit vectors, u1 and u2 and the problem of rotating in the counterclockwise direction
about u3 where u3 = u1×u2 so that u1,u2,u3 forms a right handed orthogonal coordinate system.
Thus the vector u3 is coming out of the page.
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✠

❄

✲

❘

θ
θ

u1

u2

Let T denote the desired rotation. Then

T (au1 + bu2 + cu3) = aTu1 + bTu2 + cTu3

= (a cos θ − b sin θ)u1 + (a sin θ + b cos θ)u2 + cu3.

Thus in terms of the basis {u1,u2,u3} , the matrix of this transformation is




cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .

I want to write this transformation in terms of the usual basis vectors, {e1, e2, e3}. From Proposition
17.5.8, if A is this matrix,




cos θ − sin θ 0
sin θ cos θ 0
0 0 1




=
(
u1 u2 u3

)−1
A
(
u1 u2 u3

)

and so you can solve for A if you know the ui.
Suppose the unit vector about which the counterclockwise rotation takes place is (a, b, c). Then

I obtain vectors, u1 and u2 such that {u1,u2,u3} is a right handed orthogonal system with u3 =
(a, b, c) and then use the above result. It is of course somewhat arbitrary how this is accomplished.
I will assume, however that |c| ≠ 1 since otherwise you are looking at either clockwise or counter
clockwise rotation about the positive z axis and this is a problem which has been dealt with earlier. (If
c = −1, it amounts to clockwise rotation about the positive z axis while if c = 1, it is counterclockwise
rotation about the positive z axis.) Then let u3 = (a, b, c) and u2 ≡ 1√

a2+b2
(b,−a, 0) . This one is

perpendicular to u3. If {u1,u2,u3} is to be a right hand system it is necessary to have

u1 = u2 × u3 =
1√

(a2 + b2) (a2 + b2 + c2)

(
−ac,−bc, a2 + b2

)

Now recall that u3 is a unit vector and so the above equals

1√
(a2 + b2)

(
−ac,−bc, a2 + b2

)

Then from the above, A is given by




−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c







cos θ − sin θ 0
sin θ cos θ 0
0 0 1







−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c




−1

Of course the matrix is an orthogonal matrix so it is easy to take the inverse by simply taking the
transpose. Then doing the computation and then some simplification yields
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=




a2 +
(
1− a2

)
cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 +
(
1− c2

)
cos θ


 . (17.12)

With this, it is clear how to rotate clockwise about the unit vector (a, b, c) . Just rotate counter
clockwise through an angle of −θ. Thus the matrix for this clockwise rotation is just

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ) + c sin θ ac (1− cos θ)− b sin θ

ab (1− cos θ)− c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ) + a sin θ

ac (1− cos θ) + b sin θ bc (1− cos θ)− a sin θ c2 +
(
1− c2

)
cos θ


 .

In deriving (17.12) it was assumed that c ̸= ±1 but even in this case, it gives the correct answer.
Suppose for example that c = 1 so you are rotating in the counter clockwise direction about the
positive z axis. Then a, b are both equal to zero and (17.12) reduces to the correct matrix for rotation
about the positive z axis.

17.6 Exercises

1. Find the matrix with respect to the standard basis vectors for the linear transformation which
rotates every vector in R2 through an angle of π/3.

2. Find the matrix with respect to the standard basis vectors for the linear transformation which
rotates every vector in R2 through an angle of π/4.

3. Find the matrix with respect to the standard basis vectors for the linear transformation which
rotates every vector in R2 through an angle of π/12. Hint: Note that π/12 = π/3− π/4.

4. Find the matrix with respect to the standard basis vectors for the linear transformation which
rotates every vector in R2 through an angle of 2π/3 and then reflects across the x axis.

5. Find the matrix with respect to the standard basis vectors for the linear transformation which
rotates every vector in R2 through an angle of π/3 and then reflects across the y axis.

6. Find the matrix with respect to the standard basis vectors for the linear transformation which
rotates every vector in R2 through an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

7. Let V be an inner product space and u ̸= 0. Show that the function Tu defined by Tu (v) ≡
v − proju (v) is also a linear transformation. Here

proj
u
(v) ≡ ⟨v,u⟩

|u|2
u

Now show directly from the axioms of the inner product that

⟨Tuv,u⟩ = 0

8. Let V be a finite dimensional inner product space, the field of scalars equal to either R or C.
Verify that f given by fv ≡ ⟨v, z⟩ is in L (V,F). Next suppose f is an arbitrary element of
L (V,F). Show the following.

(a) If f = 0, the zero mapping, then fv = ⟨v,0⟩ for all v ∈ V .

(b) If f ̸= 0 then there exists z ̸= 0 satisfying ⟨u, z⟩ = 0 for all u ∈ ker (f) .

(c) Explain why f (y) z− f (z)y ∈ ker (f).
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(d) Use part b. to show that there exists w such that f (y) = ⟨y,w⟩ for all y ∈ V .

(e) Show there is at most one such w.

You have now proved the Riesz representation theorem which states that every f ∈ L (V,F) is
of the form

f (y) = ⟨y,w⟩
for a unique w ∈ V.

9. ↑Let A ∈ L (V,W ) where V,W are two finite dimensional inner product spaces, both having
field of scalars equal to F which is either R or C. Let f ∈ L (V,F) be given by

f (y) ≡ ⟨Ay, z⟩

where ⟨⟩ now refers to the inner product in W. Use the above problem to verify that there
exists a unique w ∈ V such that f (y) = ⟨y,w⟩ , the inner product here being the one on V .
Let A∗z ≡ w. Show that A∗ ∈ L (W,V ) and by construction,

⟨Ay, z⟩ = ⟨y,A∗z⟩ .

In the case that V = Fn and W = Fm and A consists of multiplication on the left by an m×n
matrix, give a description of A∗.

10. Let A be the linear transformation defined on the vector space of smooth functions (Those
which have all derivatives) given by Af = D2 + 2D + 1. Find ker (A). Hint: First solve
(D + 1) z = 0. Then solve (D + 1) y = z.

11. Let A be the linear transformation defined on the vector space of smooth functions (Those
which have all derivatives) given by Af = D2+5D+4. Find ker (A). Note that you could first
find ker (D + 4) whereD is the differentiation operator and then consider ker (D + 1) (D + 4) =
ker (A) and consider Sylvester’s theorem.

12. Suppose Ax = b has a solution where A is a linear transformation. Explain why the solution
is unique precisely when Ax = 0 has only the trivial (zero) solution.

13. Verify the linear transformation determined by the matrix
(

1 0 2
0 1 4

)

maps R3 onto R2 but the linear transformation determined by this matrix is not one to one.

14. Let L be the linear transformation taking polynomials of degree at most three to polynomials
of degree at most three given by

D2 + 2D + 1

where D is the differentiation operator. Find the matrix of this linear transformation relative
to the basis

{
1, x, x2, x3

}
. Find the matrix directly and then find the matrix with respect to

the differential operator D + 1 and multiply this matrix by itself. You should get the same
thing. Why?

15. Let L be the linear transformation taking polynomials of degree at most three to polynomials
of degree at most three given by

D2 + 5D + 4

where D is the differentiation operator. Find the matrix of this linear transformation relative
to the bases

{
1, x, x2, x3

}
. Find the matrix directly and then find the matrices with respect

to the differential operators D+1, D+4 and multiply these two matrices. You should get the
same thing. Why?
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16. Show that if L ∈ L (V,W ) (linear transformation) where V and W are vector spaces, then if
Lyp = f for some yp ∈ V, then the general solution of Ly = f is of the form

ker (L) + yp.

17. Let L ∈ L (V,W ) where V,W are vector spaces, finite or infinite dimensional, and define x ∼ y

if x− y ∈ ker (L) . Show that ∼ is an equivalence relation. Next define addition and scalar
multiplication on the space of equivalence classes as follows.

[x] + [y] ≡ [x+ y]

α [x] = [αx]

Show that these are well defined definitions and that the set of equivalence classes is a vector
space with respect to these operations. The zero is [kerL] . Denote the resulting vector space
by V/ ker (L) . Now suppose L is onto W. Define a mapping A : V/ ker (K) 7→W as follows.

A [x] ≡ Lx

Show that A is well defined, one to one and onto.

18. If V is a finite dimensional vector space and L ∈ L (V, V ) , show that the minimal polynomial
for L equals the minimal polynomial of A where A is the n × n matrix of L with respect to
some basis.

19. Let A be an n × n matrix. Describe a fairly simple method based on row operations for
computing the minimal polynomial of A. Recall, that this is a monic polynomial p (λ) such
that p (A) = 0 and it has smallest degree of all such monic polynomials. Hint: Consider

I, A2, · · · . Regard each as a vector in Fn2

and consider taking the row reduced echelon form
or something like this. You might also use the Cayley Hamilton theorem to note that you can
stop the above sequence at An.

20. Let A be an n× n matrix which is non defective. That is, there exists a basis of eigenvectors.
Show that if p (λ) is the minimal polynomial, then p (λ) has no repeated roots. Hint: First
show that the minimal polynomial of A is the same as the minimal polynomial of the diagonal
matrix

D =




D (λ1)
. . .

D (λr)




Where D (λ) is a diagonal matrix having λ down the main diagonal and in the above, the λi
are distinct. Show that the minimal polynomial is

∏r
i=1 (λ− λi) .

21. Show that if A is an n×n matrix and the minimal polynomial has no repeated roots, then A is
non defective and there exists a basis of eigenvectors. Thus, from the above problem, a matrix
may be diagonalized if and only if its minimal polynomial has no repeated roots. (It turns out
this condition is something which is relatively easy to determine. You look at the polynomial
and its derivative and ask whether these are relatively prime. The answer to this question can
be determined using routine algorithms as discussed above in the section on polynomials and
fields. Thus it is possible to determine whether an n×n matrix is defective.) Hint: You might
want to use Theorem 17.3.1.
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Recall Corollary 17.4.4. For convenience, this corollary is stated below.

Corollary A.0.1 Let A be an n×n matrix. Then A is similar to an upper triangular, block diagonal
matrix of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr




where Tk is an upper triangular matrix having only λk on the main diagonal. The diagonal blocks
can be arranged in any order desired. If Tk is an mk ×mk matrix, then

mk = dimker (A− λkI)
rk .

where the minimal polynomial of A is
p∏

k=1

(λ− λk)
rk

The Jordan Canonical form involves a further reduction in which the upper triangular matrices,
Tk assume a particularly revealing and simple form.

Definition A.0.2 Jk (α) is a Jordan block if it is a k × k matrix of the form

Jk (α) =




α 1 0

0
. . .

. . .
...

. . .
. . . 1

0 · · · 0 α




In words, there is an unbroken string of ones down the super diagonal and the number, α filling
every space on the main diagonal with zeros everywhere else. A matrix is strictly upper triangular
if it is of the form 


0 ∗ ∗
...

. . . ∗
0 · · · 0


 ,

where there are zeroes on the main diagonal and below the main diagonal.

391
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The Jordan canonical form involves each of the upper triangular matrices in the conclusion of
Corollary 17.4.4 being a block diagonal matrix with the blocks being Jordan blocks in which the size
of the blocks decreases from the upper left to the lower right. The idea is to show that every square
matrix is similar to a unique such matrix which is in Jordan canonical form. It is assumed here
that the field of scalars is C but everything which will be done below works just fine if the minimal
polynomial can be completely factored into linear factors in the field of scalars.

Note that in the conclusion of Corollary 17.4.4 each of the triangular matrices is of the form
αI +N where N is a strictly upper triangular matrix. The existence of the Jordan canonical form
follows quickly from the following lemma.

Lemma A.0.3 Let N be an n × n matrix which is strictly upper triangular. Then there exists an
invertible matrix S such that

S−1NS =




Jr1 (0) 0
Jr2 (0)

. . .

0 Jrs (0)




where r1 ≥ r2 ≥ · · · ≥ rs ≥ 1 and
∑s

i=1 ri = n.

Proof: First note the only eigenvalue of N is 0. Let v1 be an eigenvector. Then {v1,v2, · · · ,vr}
is called a chain if Nvk+1 = vk for all k = 1, 2, · · · , r and v1 is an eigenvector so Nv1 = 0. It will
be called a maximal chain if there is no solution v, to the equation, Nv = vr.

Claim 1: The vectors in any chain are linearly independent and for

{v1,v2, · · · ,vr}

a chain based on v1,

N : span (v1,v2, · · · ,vr) 7→ span (v1,v2, · · · ,vr) . (1.1)

Also if {v1,v2, · · · ,vr} is a chain, then r ≤ n.
Proof: First note that (1.1) is obvious because

N
r∑

i=1

civi =
r∑

i=2

civi−1.

It only remains to verify the vectors of a chain are independent. Suppose then

r∑

k=1

ckvk = 0.

Do Nr−1 to it to conclude cr = 0. Next do Nr−2 to it to conclude cr−1 = 0 and continue this way.
Now it is obvious r ≤ n because the chain is independent. This proves the claim.

Consider the set of all chains based on eigenvectors. Since all have total length no larger than n
it follows there exists one which has maximal length,

{
v1
1, · · · ,v1

r1

}
≡ B1. If span (B1) contains all

eigenvectors of N, then stop. Otherwise, consider all chains based on eigenvectors not in span (B1)
and pick one, B2 ≡

{
v2
1, · · · ,v2

r2

}
which is as long as possible. Thus r2 ≤ r1. If span (B1, B2)

contains all eigenvectors of N, stop. Otherwise, consider all chains based on eigenvectors not in
span (B1, B2) and pick one, B3 ≡

{
v3
1, · · · ,v3

r3

}
such that r3 is as large as possible. Continue this

way. Thus rk ≥ rk+1.
Claim 2: The above process terminates with a finite list of chains

{B1, · · · , Bs}
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because for any k, {B1, · · · , Bk} is linearly independent.
Proof of Claim 2: The claim is true if k = 1. This follows from Claim 1. Suppose it is true for

k − 1, k ≥ 2. Then {B1, · · · , Bk−1} is linearly independent. Suppose

p∑

q=1

cqwq = 0, cq ̸= 0

where the wq come from {B1, · · · , Bk−1, Bk} . By induction, some of these wq must come from Bk.
Let vk

i be the one for which i is as large as possible. Then do N i−1 to both sides to obtain vk
1 , the

eigenvector upon which the chain Bk is based, is a linear combination of {B1, · · · , Bk−1} contrary to
the construction. Since {B1, · · · , Bk} is linearly independent, the process terminates. This proves
the claim.

Claim 3: Suppose Nw = 0. (w is an eigenvector) Then there exist scalars, ci such that

w =

s∑

i=1

civ
i
1.

Recall that vi
1 is the eigenvector in the ith chain on which this chain is based.

Proof of Claim 3: From the construction, w ∈ span (B1, · · · , Bs) since otherwise, it could serve
as a base for another chain. Therefore,

w =

s∑

i=1

ri∑

k=1

cki v
i
k.

Now apply N to both sides.

0 =

s∑

i=1

ri∑

k=2

cki v
i
k−1

and so by Claim 2, cki = 0 if k ≥ 2. Therefore,

w =
s∑

i=1

c1iv
i
1

and this proves the claim.
It remains to verify that span (B1, · · · , Bs) = Fn. Suppose w /∈ span (B1, · · · , Bs) . By Claim 3

this implies w is not an eigenvector since all the eigenvectors are in span (B1, · · · , Bs) . Since N
n = 0,

there exists a smallest integer, k ≥ 2 such that Nkw = 0 but Nk−1w ̸= 0. Then k ≤ min (r1, · · · , rs)
because there exists a chain of length k based on the eigenvector Nk−1w, namely

Nk−1w,Nk−2w,Nk−3w, · · · ,w

and this chain must be no longer than the preceding chains because of the construction in which
a longest possible chain was chosen at each step. Since Nk−1w is an eigenvector, it follows from
Claim 3 that

Nk−1w =

s∑

i=1

civ
i
1 =

s∑

i=1

ciN
k−1vi

k.

Therefore,

Nk−1

(
w−

s∑

i=1

civ
i
k

)
= 0

and so,

NNk−2

(
w−

s∑

i=1

civ
i
k

)
= 0
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which implies Nk−2
(
w−∑s

i=1 civ
i
k

)
is an eigenvector and so by Claim 3 there exist di such

that

Nk−2

(
w−

s∑

i=1

civ
i
k

)
=

s∑

i=1

div
i
1 =

s∑

i=1

diN
k−2vi

k−1

and so

Nk−2

(
w−

s∑

i=1

civ
i
k −

s∑

i=1

div
i
k−1

)
= 0.

Continuing this way it follows that for each j < k, there exists a vector

zj ∈ span (B1, · · · , Bs)

such that
Nk−j (w − zj) = 0.

In particular, taking j = (k − 1) yields

N (w − zk−1) = 0

and now using Claim 3 again yields w ∈ span (B1, · · · , Bs), a contradiction. Therefore,

span (B1, · · · , Bs) = Fn

after all and so {B1, · · · , Bs} is a basis for Fn.
Now consider the block matrix

S =
(
B1 · · · Bs

)

where
Bk =

(
vk
1 · · · vk

rk

)
.

Thus

S−1 =




C1

...
Cs




where CiBi = Iri×ri and CiNBj = 0 if i ̸= j. Let

Ck =




uT
1
...

uT
rk


 .

Then

CkNBk =




uT
1
...

uT
rk



(
Nvk

1 · · · Nvk
rk

)

=




uT
1
...

uT
rk



(
0 vk

1 · · · vk
rk−1

)

which equals an rk × rk matrix of the form

Jrk (0) =




0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0



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That is, it has ones down the super diagonal and zeros everywhere else. It follows

S−1NS =




C1

...
Cs


N

(
B1 · · · Bs

)

=




Jr1 (0) 0
Jr2 (0)

. . .

0 Jrs (0)




as claimed. �

Now let the upper triangular matrices, Tk be given in the conclusion of Corollary 17.4.4. Thus,
as noted earlier,

Tk = λkIrk×rk +Nk

where Nk is a strictly upper triangular matrix of the sort just discussed in Lemma A.0.3. Therefore,
there exists Sk such that S−1

k NkSk is of the form given in Lemma A.0.3. Now S−1
k λkIrk×rkSk =

λkIrk×rk and so S−1
k TkSk is of the form




Ji1 (λk) 0
Ji2 (λk)

. . .

0 Jis (λk)




where i1 ≥ i2 ≥ · · · ≥ is and
∑s

j=1 ij = rk. This proves the following corollary.

Corollary A.0.4 Suppose A is an upper triangular n× n matrix having α in every position on the
main diagonal. Then there exists an invertible matrix S such that

S−1AS =




Jk1
(α) 0

Jk2
(α)

. . .

0 Jkr
(α)




where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = n.

The next theorem is gives the existence of the Jordan canonical form.

Theorem A.0.5 Let A be an n× n matrix having eigenvalues λ1, · · · , λr where the multiplicity of
λi as a zero of the characteristic polynomial equals mi. Then there exists an invertible matrix S such
that

S−1AS =




J (λ1) 0
. . .

0 J (λr)


 (1.2)

where J (λk) is an mk ×mk matrix of the form




Jk1
(λk) 0

Jk2
(λk)

. . .

0 Jkr
(λk)


 (1.3)

where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = mk.
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Proof: From Corollary 17.4.4, there exists S such that S−1AS is of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr




where Tk is an upper triangular mk×mk matrix having only λk on the main diagonal. By Corollary
A.0.4 There exist matrices, Sk such that S−1

k TkSk = J (λk) where J (λk) is described in (1.3). Now
let M be the block diagonal matrix given by

M =




S1 0
. . .

0 Sr


 .

It follows that M−1S−1ASM =M−1TM and this is of the desired form. �

What about the uniqueness of the Jordan canonical form? Obviously if you change the order of
the eigenvalues, you get a different Jordan canonical form but it turns out that if the order of the
eigenvalues is the same, then the Jordan canonical form is unique. In fact, it is the same for any
two similar matrices.

Theorem A.0.6 Let A and B be two similar matrices. Let JA and JB be Jordan forms of A and
B respectively, made up of the blocks JA (λi) and JB (λi) respectively. Then JA and JB are identical
except possibly for the order of the J (λi) where the λi are defined above.

Proof: First note that for λi an eigenvalue, the matrices JA (λi) and JB (λi) are both of sizemi×
mi because the two matrices A and B, being similar, have exactly the same characteristic equation
and the size of a block equals the algebraic multiplicity of the eigenvalue as a zero of the characteristic
equation. It is only necessary to worry about the number and size of the Jordan blocks making up
JA (λi) and JB (λi) . Let the eigenvalues of A and B be {λ1, · · · , λr} . Consider the two sequences of
numbers {rank (A− λI)

m} and {rank (B − λI)
m}. Since A and B are similar, these two sequences

coincide. (Why?) Also, for the same reason, {rank (JA − λI)
m} coincides with {rank (JB − λI)

m} .
Now pick λk an eigenvalue and consider {rank (JA − λkI)

m} and {rank (JB − λkI)
m} . Then

JA − λkI =




JA (λ1 − λk) 0
. . .

JA (0)
. . .

0 JA (λr − λk)




and a similar formula holds for JB − λkI. Here

JA (0) =




Jk1
(0) 0

Jk2
(0)

. . .

0 Jkr
(0)




and

JB (0) =




Jl1 (0) 0
Jl2 (0)

. . .

0 Jlp (0)




Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



397

and it suffices to verify that li = ki for all i. As noted above,
∑
ki =

∑
li. Now from the above

formulas,

rank (JA − λkI)
m

=
∑

i ̸=k

mi + rank (JA (0)
m
)

=
∑

i ̸=k

mi + rank (JB (0)
m
)

= rank (JB − λkI)
m
,

which shows rank (JA (0)
m
) = rank (JB (0)

m
) for all m. However,

JB (0)
m

=




Jl1 (0)
m

0
Jl2 (0)

m

. . .

0 Jlp (0)
m




with a similar formula holding for JA (0)
m
and rank (JB (0)

m
) =

∑p
i=1 rank (Jli (0)

m
) , similar for

rank (JA (0)
m
) . In going from m to m+ 1,

rank (Jli (0)
m
)− 1 = rank

(
Jli (0)

m+1
)

until m = li at which time there is no further change. Therefore, p = r since otherwise, there would
exist a discrepancy right away in going from m = 1 to m = 2. Now suppose the sequence {li} is
not equal to the sequence, {ki}. Then lr−b ̸= kr−b for some b a nonnegative integer taken to be a
small as possible. Say lr−b > kr−b. Then, letting m = kr−b,

r∑

i=1

rank (Jli (0)
m
) =

r∑

i=1

rank (Jki
(0)

m
)

and in going to m+1 a discrepancy must occur because the sum on the right will contribute less to
the decrease in rank than the sum on the left. �
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The Fundamental Theorem Of

Algebra

The fundamental theorem of algebra states that every non constant polynomial having coefficients
in C has a zero in C. If C is replaced by R, this is not true because of the example, x2 +1 = 0. This
theorem is a very remarkable result and notwithstanding its title, all the best proofs of it depend
on either analysis or topology. It was first mostly proved by Gauss in 1797. The first complete
proof was given by Argand in 1806. The proof given here follows Rudin [13]. See also Hardy [7] for
a similar proof, more discussion and references. The best proof is found in the theory of complex
analysis. Recall De Moivre’s theorem from trigonometry which is listed here for convenience.

Theorem B.0.7 Let r > 0 be given. Then if n is a positive integer,

[r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) .

Recall that this theorem is the basis for proving the following corollary from trigonometry, also
listed here for convenience.

Corollary B.0.8 Let z be a non zero complex number and let k be a positive integer. Then there
are always exactly k kth roots of z in C.

Lemma B.0.9 Let ak ∈ C for k = 1, · · · , n and let p (z) ≡∑n
k=1 akz

k. Then p is continuous.

Proof:

|azn − awn| ≤ |a| |z − w|
∣∣zn−1 + zn−2w + · · ·+ wn−1

∣∣ .
Then for |z − w| < 1, the triangle inequality implies |w| < 1 + |z| and so if |z − w| < 1,

|azn − awn| ≤ |a| |z − w|n (1 + |z|)n .

If ε > 0 is given, let

δ < min

(
1,

ε

|a|n (1 + |z|)n
)
.

It follows from the above inequality that for |z − w| < δ, |azn − awn| < ε. The function of the lemma
is just the sum of functions of this sort and so it follows that it is also continuous. �

Theorem B.0.10 (Fundamental theorem of Algebra) Let p (z) be a nonconstant polynomial. Then
there exists z ∈ C such that p (z) = 0.

Proof: Suppose not. Then

p (z) =
n∑

k=0

akz
k

399
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where an ̸= 0, n > 0. Then

|p (z)| ≥ |an| |z|n −
n−1∑

k=0

|ak| |z|k

and so
lim

|z|→∞
|p (z)| = ∞. (2.1)

Now let
λ ≡ inf {|p (z)| : z ∈ C} .

By (2.1), there exists an R > 0 such that if |z| > R, it follows that |p (z)| > λ+ 1. Therefore,

λ ≡ inf {|p (z)| : z ∈ C} = inf {|p (z)| : |z| ≤ R} .

The set {z : |z| ≤ R} is a closed and bounded set and so this infimum is achieved at some point w
with |w| ≤ R. A contradiction is obtained if |p (w)| = 0 so assume |p (w)| > 0. Then consider

q (z) ≡ p (z + w)

p (w)
.

It follows q (z) is of the form
q (z) = 1 + ckz

k + · · ·+ cnz
n

where ck ̸= 0, because q (0) = 1. It is also true that |q (z)| ≥ 1 by the assumption that |p (w)| is the
smallest value of |p (z)| . Now let θ ∈ C be a complex number with |θ| = 1 and

θckw
k = − |w|k |ck| .

If

w ̸= 0, θ =
−
∣∣wk
∣∣ |ck|

wkck

and if w = 0, θ = 1 will work. Now let ηk = θ and let t be a small positive number.

q (tηw) ≡ 1− tk |w|k |ck|+ · · ·+ cnt
n (ηw)

n

which is of the form
1− tk |w|k |ck|+ tk (g (t, w))

where limt→0 g (t, w) = 0. Letting t be small enough,

|g (t, w)| < |w|k |ck| /2

and so for such t,
|q (tηw)| < 1− tk |w|k |ck|+ tk |w|k |ck| /2 < 1,

a contradiction to |q (z)| ≥ 1. �
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Answers To Selected Exercises

C.1 Exercises 21

1 Let z = 5 + i9. Find z−1.

(5 + i9)
−1

= 5
106 − 9

106 i

2 Let z = 2+i7 and let w = 3−i8. Find zw, z+w, z2,
and w/z.

62 + 5i, 5− i,−45 + 28i, and − 50
53 − 37

53 i.

4 Graph the complex cube roots of 8 in the complex
plane. Do the same for the four fourth roots of 16.

The cube roots are the solutions to z3 + 8 = 0,
Solution is: i

√
3 + 1, 1− i

√
3,−2

The fourth roots are the solutions to z4 + 16 = 0,
Solution is:

(1− i)
√
2,− (1 + i)

√
2,− (1− i)

√
2, (1 + i)

√
2. When you graph these, you will have three

equally spaced points on the circle of radius 2 for
the cube roots and you will have four equally spaced
points on the circle of radius 2 for the fourth roots.
Here are pictures which should result.

5 If z is a complex number, show there exists ω a
complex number with |ω| = 1 and ωz = |z| .

If z = 0, let ω = 1. If z ̸= 0, let ω =
z

|z|
7 You already know formulas for cos (x+ y) and sin (x+ y)

and these were used to prove De Moivre’s theorem.

Now using De Moivre’s theorem, derive a formula
for sin (5x) and one for cos (5x).

sin (5x) = 5 cos4 x sinx− 10 cos2 x sin3 x+ sin5 x

cos (5x) = cos5 x− 10 cos3 x sin2 x+ 5 cosx sin4 x

9 Factor x3 + 8 as a product of linear factors.

x3 +8 = 0, Solution is: i
√
3+ 1, 1− i

√
3,−2 and so

this polynomial equals

(x+ 2)
(
x−

(
i
√
3 + 1

))(
x−

(
1− i

√
3
))

10 Write x3+27 in the form (x+ 3)
(
x2 + ax+ b

)
where

x2 + ax+ b cannot be factored any more using only
real numbers.

x3 + 27 = (x+ 3)
(
x2 − 3x+ 9

)

12 Factor x4+16 as the product of two quadratic poly-
nomials each of which cannot be factored further
without using complex numbers.

x4 + 16 =
(
x2 − 2

√
2x+ 4

) (
x2 + 2

√
2x+ 4

)
. You

can use the information in the preceding problem.
Note that (x− z) (x− z) has real coefficients.

13 If z, w are complex numbers prove zw = zw and
then show by induction that z1 · · · zm = z1 · · · zm.
Also verify that

∑m
k=1 zk =

∑m
k=1 zk. In words this

says the conjugate of a product equals the product
of the conjugates and the conjugate of a sum equals
the sum of the conjugates.

(a+ ib) (c+ id) = ac− bd+ i (ad+ bc) = (ac− bd)−
i (ad+ bc)

(a− ib) (c− id) = ac− bd− i (ad+ bc) which is the
same thing. Thus it holds for a product of two
complex numbers. Now suppose you have that it is
true for the product of n complex numbers. Then
z1 · · · zn+1 =
z1 · · · zn zn+1 and now, by induction this equals

z1 · · · zn zn+1

403
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As to sums, this is even easier.

n∑

j=1

(xj + iyj) =

n∑

j=1

xj + i

n∑

j=1

yj

=

n∑

j=1

xj − i

n∑

j=1

yj =

n∑

j=1

xj − iyj =

n∑

j=1

(xj + iyj).

14 Suppose p (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0
where all the ak are real numbers. Suppose also
that p (z) = 0 for some z ∈ C. Show it follows that
p (z) = 0 also.

You just use the above problem. If p (z) = 0, then
you have

p (z) = 0 = anzn + an−1zn−1 + · · ·+ a1z + a0

= anzn + an−1zn−1 + · · ·+ a1z + a0

= an z
n + an−1 z

n−1 + · · ·+ a1 z + a0

= anz
n + an−1z

n−1 + · · ·+ a1z + a0

= p (z)

15 Show that 1 + i, 2 + i are the only two zeros to

p (x) = x2 − (3 + 2i)x+ (1 + 3i)

so the zeros do not necessarily come in conjugate
pairs if the coefficients are not real.

(x− (1 + i)) (x− (2 + i)) = x2 − (3 + 2i)x+ 1+ 3i

16 I claim that 1 = −1. Here is why.

−1 = i2 =
√
−1

√
−1 =

√
(−1)

2
=

√
1 = 1.

This is clearly a remarkable result but is there some-
thing wrong with it? If so, what is wrong?

Something is wrong. There is no single
√
−1.

17 De Moivre’s theorem is really a grand thing. I plan
to use it now for rational exponents, not just inte-

gers. 1 = 1(1/4) = (cos 2π + i sin 2π)
1/4

=
cos (π/2)+ i sin (π/2) = i. Therefore, squaring both
sides it follows 1 = −1 as in the previous problem.
What does this tell you about De Moivre’s theo-
rem? Is there a profound difference between raising
numbers to integer powers and raising numbers to
non integer powers?

It doesn’t work. This is because there are four
fourth roots of 1.

18 Here is another question: If n is an integer, is it al-
ways true that (cos θ − i sin θ)

n
= cos (nθ)−i sin (nθ)?

Explain.

Yes, this is true.

(cos θ − i sin θ)
n

= (cos (−θ) + i sin (−θ))n

= cos (−nθ) + i sin (−nθ)
= cos (nθ)− i sin (nθ)

19 Suppose you have any polynomial in cos θ and sin θ.
By this I mean an expression of the form∑m

α=0

∑n
β=0 aαβ cos

α θ sinβ θ where aαβ ∈ C. Can
this always be written in the form∑m+n

γ=−(n+m) bγ cos γθ+
∑n+m

τ=−(n+m) cτ sin τθ? Explain.

Yes it can. It follows from the identities for the sine
and cosine of the sum and difference of angles that

sin a sin b =
1

2
(cos (a− b)− cos (a+ b))

cos a cos b =
1

2
(cos (a+ b) + cos (a− b))

sin a cos b =
1

2
(sin (a+ b) + sin (a− b))

Now cos θ = 1 cos θ + 0 sin θ and sin θ = 0 cos θ +
1 sin θ. Suppose that whenever k ≤ n,

cosk (θ) =
k∑

j=−k

aj cos (jθ) + bj sin (jθ)

for some numbers aj , bj . Then

cosn+1 (θ) =

n∑

j=−n

aj cos (θ) cos (jθ)+bj cos (θ) sin (jθ)

Now use the above identities to write all products as
sums of sines and cosines of (j − 1) θ, jθ, (j + 1) θ.
Then adjusting the constants, it follows

cosn+1 (θ) =
n+1∑

j=−n+1

a′j cos (θ) cos (jθ)+b
′
j cos (θ) sin (jθ)

You can do something similar with sinn (θ) and with
products of the form

cosα θ sinβ θ.

20 Suppose p (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0
is a polynomial and it has n zeros,

z1, z2, · · · , zn
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listed according to multiplicity. (z is a root of multi-
plicitym if the polynomial f (x) = (x− z)

m
divides

p (x) but (x− z) f (x) does not.) Show that

p (x) = an (x− z1) (x− z2) · · · (x− zn) .

p (x) = (x− z1) q (x)+r (x) where r (x) is a nonzero
constant or equal to 0. However, r (z1) = 0 and so
r (x) = 0. Now do to q (x) what was done to p (x)
and continue until the degree of the resulting q (x)
equals 0. Then you have the above factorization.

21 Give the solutions to the following quadratic equa-
tions having real coefficients.

(a) x2 − 2x+ 2 = 0, Solution is: 1 + i, 1− i

(b) 3x2+x+3 = 0, Solution is: 1
6 i
√
35− 1

6 ,− 1
6 i
√
35−

1
6

(c) x2 − 6x+ 13 = 0, Solution is: 3 + 2i, 3− 2i

(d) x2+4x+9 = 0, Solution is: i
√
5−2,−i

√
5−2

(e) 4x2 + 4x+ 5 = 0, Solution is: − 1
2 + i,− 1

2 − i

22 Give the solutions to the following quadratic equa-
tions having complex coefficients. Note how the so-
lutions do not come in conjugate pairs as they do
when the equation has real coefficients.

(a) x2 + 2x + 1 + i = 0, Solution is : x = −1 +
1
2

√
2− 1

2 i
√
2, x = −1− 1

2

√
2 + 1

2 i
√
2

(b) 4x2+4ix−5 = 0, Solution is : x = 1− 1
2 i, x =

−1− 1
2 i

(c) 4x2 + (4 + 4i)x+1+ 2i = 0, Solution is : x =
− 1

2 , x = − 1
2 − i

(d) x2−4ix−5 = 0, Solution is : x = −1+2i, x =
1 + 2i

(e) 3x2 + (1− i)x + 3i = 0, Solution is : x =
− 1

6+
1
6

√
19+

(
1
6 − 1

6

√
19
)
i, x = − 1

6− 1
6

√
19+(

1
6 + 1

6

√
19
)
i

23 Prove the fundamental theorem of algebra for quadratic
polynomials having coefficients in C.

This is pretty easy because you can simply write
the quadratic formula. Finding the square roots of
complex numbers is easy from the above presenta-
tion. Hence, every quadratic polynomial has two
roots in C. Note that the two square roots in the
quadratic formula are on opposite sides of the unit
circle so one is −1 times the other.

C.2 Exercises 36

1
(
50 + 300√

2

)
i+ 300√

2
j

2 θ = 9.56 degrees.

3 Will need 68. 966 gallons of gas. Therefore, it will
not make it.

4 At
(
155 75

√
3 + 150

)

=
(
155.0 279. 9

)

5 It takes 2 hours

6 1
6

√
13 miles. He ends up 1/3 mile down stream.

7
(

2
3 ,

√
5
3

)
In the second case, he could not do it.

8 (−3, 2,−5) .

9 (3, 0, 0).

10
(
5
√
2 + 5

2

√
3 11

2 − 5
√
2
)

11 T = 50
√
26.

C.3 Exercises 47

1 This formula says that
u · v = |u| |v| cos θ where θ is the included angle
between the two vectors. Thus

|u · v| = |u| |v| |cos θ| ≤ |u| |v|

and equality holds if and only if θ = 0 or π. This
means that the two vectors either point in the same
direction or opposite directions. Hence one is a mul-
tiple of the other.

3 −0.197 39 = cos θ, Thus θ = 1. 769 5 radians.

4 −0.444 44 = cos θ, θ = 2. 031 3 radians.

5 u·v
u·uu =−5

14 (1, 2, 3)

=
(
− 5

14 − 5
7 − 15

14

)

7 u·v
u·uu = (1,2,−2,1)·(1,2,3,0)

1+4+9 (1, 2, 3, 0)

=
(
− 1

14 − 1
7 − 3

14 0
)

8 It makes no sense.

9 proj
D
(F) ≡ F·D

|D|
D

|D|

= (|F| cos θ) D

|D| = (|F| cos θ)u

11 40 cos
(

20
180π

)
100 = 3758. 8
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13 20
(
cos π

4

)
300 = 4242. 6

15 (−4, 3,−4) · (0, 1, 0)× 10 = 30

17 (2, 3,−4) ·
(
0, 1√

2
, 1√

2

)
20 = −10

√
2

19 (1, 2, 3, 4) · (2, 0, 1, 3) = 17

21 |a+ b|2 + |a− b|2 =

|a|2 + |b|2 + 2a · b+ |a|2 + |b|2 − 2a · b
= 2 |a|2 + 2 |b|2

C.4 Exercises 56

1 If a ̸= 0, then the condition says that |a× u|= |a| sin θ =
0 for all angles θ. Hence a = 0 after all.

3 1
2

√
374

5 8
√
3

7 113

9 It means that if you place them so that they all have
their tails at the same point, the three will lie in the
same plane.

12 a× b× c is meaningless.

13 (u× v)×w =(u ·w)v− (v ·w)u,

u× (v ×w) = (w · u)v− (v · u)w

14 u· (z×w)v − v· (z×w)u

= [u, z,w]v− [v, z,w]u

15 [v,w, z] [u,v,w]

16 0

18 u · u = c, Therefore, u′ ·u+ u · u′ = 0 so u′ ·u = 0.

C.5 Exercises 72

1
[
x = 10

13 , y = 1
13

]

3 [x = 1, y = 0]

5
[
x = 3

5 , y = 1
5

]

6 No solution exists.

8 It appears that the solution exists but is not unique.

9 It appears that there is a unique solution.

11 There might be a solution. If so, there are infinitely
many.

12 No. Consider x+ y + z = 2 and x+ y + z = 1.

13 These can have a solution. For example,

x + y = 1, 2x + 2y = 2, 3x + 3y = 3 even has an
infinite set of solutions.

14 h = 4

15 Any h will work.

16 Any h will work.

17 If h ̸= 2 there will be a unique solution for any k.
If h = 2 and k ̸= 4, there are no solutions. If h = 2
and k = 4, then there are infinitely many solutions.

19 There is no solution.

20
[
w = 3

2y − 1, x = 2
3 − 1

2y, z =
1
3

]

22 z = t, y = 3
4 + t

(
1
4

)
,

x = 1
2 − 1

2 t where t ∈ R.

23 z = t, y = 4t, x = 2− 4t.

24 x5 = t, x4 = 1− 6t, x3 = −1 + 7t,

x2 = 4t, x1 = 3− 9t

25 x5 = t, x3 = s. Then the other variables are given
by x4 = − 1

2 − 3
2 t,

x2 = 3
2 − t 12 , x1 = 5

2 + 1
2 t− 2s.

26 [x = 1− 2t, z = 1, y = t]

27 [x = 2− 4t, y = −8t, z = t]

25 [x = −1, y = 2, z = −1]

29 [x = 2, y = 4, z = 5]

30 [x = 1, y = 2, z = −5]

31 [x = −1, y = −5, z = 4]

32 [x = 2t+ 1, y = 4t, z = t]

33 [x = 1, y = 5, z = 3]

34 [x = 4, y = −4, z = −2]

35 These are not legitimate row operations. They do
not preserve the solution set of the system.

36 {g = 60, I = 90, b = 200, s = 50}

37 [w = 15, x = 15, y = 20, z = 10] .

Saylor URL: http://www.saylor.org/courses/ma211/ The Saylor Foundation



C.6. EXERCISES 92 407

C.6 Exercises 92

1.

(
−3 −6 −9
−6 −3 −21

)
,

(
8 −5 3

−11 5 −4

)
,

Not possible,

(
−3 3 4
6 −1 7

)
, Not possible, Not

possible.

3

(
−3 −9 −3
−6 −6 3

)
,

(
5 −18 5

−11 4 4

)
,




11 2
13 6
−4 2


 ,

Not possible,




7
9
−2


 ,

(
−7 1 5

)
,

Not possible,

(
2
−5

)
,

(
1 3
3 9

)
, 10

4




7
5
−5


 ,Not possible,

(
−14 13 2

)
,Not possible,

11,

(
−1 −3
4 12

)

7

(
x y
−x −y

)
.

8




0 −1 −2
0 −1 −2
0 1 2


 , 1

9 [k = 4]

10 There is no possible choice of k which will make
these matrices commute.

11 To get −A, just replace every entry of A with its
additive inverse. The 0 matrix is the one which has
all zeros in it.

12 A = A+AT

2 + A−AT

2 .

13 If A = −AT , then aii = −aii and so each aii = 0.

14 Ω× u :

∣∣∣∣∣∣

i j k

ω1 ω2 ω3

u1 u2 u3

∣∣∣∣∣∣
= iω2u3 − iω3u2 − jω1u3 + jω3u1 +kω1u2 −kω2u1.

In terms of matrices, this is


ω2u3 − ω3u2
−ω1u3 + ω3u1
ω1u2 − ω2u1


 . The matrix is of the form




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 for suitable ωi since it is

skew symmetric. Now you note that multiplication
on the left by this matrix gives the same thing as
the cross product.

15 −A = −A+ (A+B)

= (−A+A) +B = 0 +B = B

16 0′ = 0′ + 0 = 0.

17 0A = (0 + 0)A = 0A+0A. Now add − (0A) to both
sides. Then 0 = 0A.

18 A + (−1)A = (1 + (−1))A = 0A = 0. Therefore,
from the uniqueness of the additive inverse, it fol-
lows that −A = (−1)A.

19
(
(αA+ βB)

T
)
ij

= (αA+ βB)ji = αAji + βBji

= α
(
AT
)
ij
+ (βB)

T
ij =

(
αAT + βBT

)
ij

20 (ImA)ij ≡
∑

j δikAkj = Aij .

24 Explain why if AB = AC and A−1 exists, then
B = C.

Because you can multiply on the left by A−1.

28

(
2 1
−1 3

)−1

=

(
3
7 − 1

7
1
7

2
7

)

29

(
0 1
5 3

)−1

=

(
− 3

5
1
5

1 0

)

30

(
2 1
3 0

)−1

=

(
0 1

3
1 − 2

3

)

31

(
2 1
4 2

)−1

does not exist. The row reduced ech-

elon form of this matrix is

(
1 1

2
0 0

)
.
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32

(
d

ad−bc − b
ad−bc

− c
ad−bc

a
ad−bc

)
, assuming ad − bc ̸= 0 of

course.

33




−2 4 −5
0 1 −2
1 −2 3




34




−2 0 3
0 1

3 − 2
3

1 0 −1




35




1 2 3
2 1 4
4 5 10


, row echelon form:




1 0 5
3

0 1 2
3

0 0 0


 . There is no inverse.

36




−1 1
2

1
2

1
2

3 1
2 − 1

2 − 5
2

−1 0 0 1
−2 − 3

4
1
4

9
4




37 A =




1 −1 2 0
1 0 2 0
0 0 3 0
1 3 0 3




38 Write




x1 + 3x2 + 2x3
2x3 + x1

6x3
x4 + 3x2 + x1


 in the form A




x1
x2
x3
x4




where A is an appropriate matrix.

A =




1 3 2 0
1 0 2 0
0 0 6 0
1 3 0 1




39 A =




1 1 1 0
1 1 2 0
−1 0 1 0
1 0 0 3




42




1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2


 . Thus the solution is




x
y
z
w


 =




1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2







a
b
c
d




=




a+ 2b+ 2d
a+ b+ 2c

2a+ b− 3c+ 2d
a+ 2b+ c+ 2d




43 Multiply on the left of both sides by A−1.

44 Multiply on both sides on the left by A−1. Thus
0 = A−10 =

A−1 (Ax) =
(
A−1A

)
x = Ix = x

45 A−1 = A−1I = A−1 (AB)

=
(
A−1A

)
B = IB = B.

46 You just need to show that
(
A−1

)T
acts like the

inverse of AT because from uniqueness in the above
problem, this will imply it is the inverse. But from
properties of the transpose,

AT
(
A−1

)T
=

(
A−1A

)T
= IT = I

(
A−1

)T
AT =

(
AA−1

)T
= IT = I

Hence
(
A−1

)T
=
(
AT
)−1

and this last matrix ex-
ists.

47 (AB)B−1A−1 = A
(
BB−1

)
A−1 = AA−1 = I

B−1A−1 (AB) = B−1
(
A−1A

)
B

= B−1IB = B−1B = I

51 Ax · y =
∑

k (Ax)k yk

=
∑

k

∑
iAkixiyk =

∑
i

∑
k A

T
ikxiyk =

(
x,ATy

)

C.7 Exercises 111

2 6

3 2

4 6

5 −4

6 −6

7 −32

8 63

9 211

11 It does not change the determinant. This was just
taking the transpose.
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13 The determinant is unchanged. It was just the first
row added to the second.

15 In this case the two columns were switched so the
determinant of the second is −1 times the determi-
nant of the first.

17 det (aA) = det (aIA) = det (aI) det (A) = an det (A) .
The matrix which has a down the main diagonal has
determinant equal to an.

19 This is not true at all. ConsiderA =

(
1 0
0 1

)
, B =

(
−1 0
0 −1

)
.

20 It must be 0 because 0 = det (0) = det
(
Ak
)
=

(det (A))
k
.

21 det (A) = 1, or −1.

23 If A = S−1BS, then SAS−1 = B and so if A ∼ B,
then B ∼ A. It is obvious that A ∼ A because
you can let S = I. Say A ∼ B and B ∼ C. Then
A = P−1BP and B = Q−1CQ. Therefore,

A = P−1Q−1CQP = (QP )
−1
C (QP )

and so A ∼ C.

25 Say M = S−1NS. Then

det (λI −M)

= det
(
λI − S−1NS

)

= det
(
λS−1S − S−1NS

)

= det
(
S−1 (λI −N)S

)

= det
(
S−1

)
det (λI −N) det (S)

= det (λI −N) det
(
S−1

)
det (S)

= det (λI −N)

31




1 0 −3
− 2

3
1
3

5
3

2
3 − 1

3 − 2
3




33




− 1
2

3
2 0

3
2 − 9

2 1
1
2 − 1

2 0




38 Show that if det (A) ̸= 0 for A an n × n matrix, it
follows that if Ax = 0, then x = 0.

If det (A) ̸= 0, then A−1 exists and so you could
multiply on both sides on the left by A−1 and obtain
that x = 0.

39 Suppose A,B are n× n matrices and that AB = I.
Show that then BA = I.Hint: You might do some-
thing like this: First explain why det (A) , det (B)
are both nonzero. Then (AB)A = A and then show
BA (BA− I) = 0. From this use what is given to
conclude A (BA− I) = 0. Then use Problem 38.

You have 1 = det (A) det (B). Hence both A and B
have inverses. Letting x be given,

A (BA− I)x = (AB)Ax−Ax

= Ax−Ax = 0

and so it follows from the above problem that

(BA− I)x = 0.

Since x is arbitrary, it follows that BA = I.

40




e−t 0 0
0 e−t (cos t+ sin t) − (sin t) e−t

0 −e−t (cos t− sin t) (cos t) e−t




41




1
2e

−t 0 1
2e

−t

1
2 cos t+

1
2 sin t − sin t 1

2 sin t− 1
2 cos t

1
2 sin t− 1

2 cos t cos t − 1
2 cos t− 1

2 sin t




C.8 Exercises 158

4 a. is not, b. is, and so is c.

5




1 0 0 3
0 1 0 0
0 0 1 −2







1 0 0
0 1 0
0 0 1
0 0 0







1 0 0 0
0 1 1

2 0
0 0 0 1




7 It is because you cannot have more than min (m,n)
nonzero rows in the row reduced echelon form. Re-
call that the number of pivot columns is the same
as the number of nonzero rows from the description
of this row reduced echelon form.

8

{(
1
2

)
,

(
1
3

)}
is a basis.

9








1
2
0


 ,




1
3
1





 is a basis.

11 Yes. This is a subspace. It is closed with respect to
vector addition and scalar multiplication.

13 Yes, this is a subspace.
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15 This is a subspace.

17 Not a subspace.

19
∑k

i=1 0xk = 0.

21 If AB = I, then B must be one to one. Otherwise
there exists x ̸= 0 such that Bx = 0. But then you
would have

x = Ix = ABx = A0 = 0

In particular, the columns of B are linearly inde-
pendent. Therefore, B is also onto. Also,

(BA− I)Bx = B (AB)x−Bx = 0

Since B is onto, it follows that BA− I maps every
vector to 0 and so this matrix is 0. Thus BA = I.

23 These vectors are not linearly independent. They
are linearly dependent. In fact −1 times the first
added to 2 times the second is the third.

25 These cannot be linearly independent because there
are 4 of them. You can have at most three. How-
ever, it might be that they span R3.


1 4 3 2
2 3 1 4
3 3 0 6


, row echelon form:




1 0 −1 2
0 1 1 0
0 0 0 0


 . The dimension of the span of

these vectors is 2 so they do not span R3.

27 These vectors are not linearly independent and so
they are not a basis. The remaining question is
whether they span.


1 4 1 2
0 3 2 4
3 3 0 0


, row echelon form:




1 0 0 0
0 1 0 0
0 0 1 2


 . The dimension of the span of

these vectors is 3 and so they do span R3.

31 Yes it is. It is the span of the vectors




2
−1
1


 ,




3
1
1


 .

Since these two vectors are a linearly independent
set, the given subspace has dimension 2.

33 It is a subspace and it equals the span of the vectors
which form the columns of the following matrix.


0 2 1 0
0 1 3 0
1 1 0 1
0 0 1 0


, row echelon form:




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0


 . It follows that the dimension of

this subspace equals 3. A basis

is








0
0
1
0


 ,




2
1
1
0


 ,




1
3
0
1








37 This is obvious. If x,y ∈ V ∩W, then for scalars
α, β, the linear combination αx + βy must be in
both V and W since they are both subspaces.

39 Let {x1, · · · , xk} be a basis for V ∩W. Then there
is a basis for V and W which are respectively

{x1, · · · , xk, yk+1, · · · , yp} ,
{x1, · · · , xk, zk+1, · · · , zq}

It follows that you must have

k + p− k + q − k ≤ n

and so you must have

p+ q − n ≤ k

41 No. There must then be infinitely many solutions.
If the system is Ax = b, then there are infinitely
many solutions to Ax = 0 and so the solutions to
Ax = b are a particular solution to Ax = b added
to the solutions to Ax = 0 of which there are in-
finitely many.

43 Yes. It has a unique solution.

45 a. Infinite solution set. b. This surely can’t happen.
If you add in another column, the rank does not get
smaller. c. You can’t have the rank equal 4 if you
only have two columns. d. In this case, there is no
solution to the system of equations represented by
the augmented matrix. e. In this case, there is a
unique solution since the columns of A are indepen-
dent.The columns are independent. Therefore, A is
one to one.
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49 Suppose ABx = 0. Then Bx ∈ ker (A)∩B (Fp) and

so Bx =
∑k

i=1Bzi showing that

x−
k∑

i=1

zi ∈ ker (B) .

Consider B (Fp) ∩ ker (A) and let a basis be

{w1, · · · ,wk} .

Then each wi is of the form Bzi = wi. Therefore,
{z1, · · · , zk} is linearly independent and ABzi =
0. Now let {u1, · · · ,ur} be a basis for ker (B) . If
ABx = 0, then Bx ∈ ker (A) ∩B (Fp) and so

Bx =

k∑

i=1

ciBzi

which implies

x−
k∑

i=1

cizi ∈ ker (B)

and so it is of the form

x−
k∑

i=1

cizi =
r∑

j=1

djuj

It follows that if ABx = 0 so that x ∈ ker (AB) ,
then

x ∈ span (z1, · · · , zk,u1, · · · ,ur) .

Therefore,

dim (ker (AB))

≤ k + r = dim (B (Fp) ∩ ker (A))

+dim (ker (B))

≤ dim (ker (A)) + dim (ker (B))

51 If det (A− λI) = 0 then (A− λI)
−1

does not ex-
ist and so the columns are not independent which
means that for some x ̸= 0, (A− λI)x = 0.

53 Since A1 is not one to one, it follows there exists
x ̸= 0 such that A1x = 0. Hence Ax = 0 although
x ̸= 0 so it follows that A is not one to one. From
another point of view, if A were one to one, then
ker (A)

⊥
= Rn and so by the Fredholm alternative,

AT would be onto Rn. However, AT has only m
columns so this cannot take place.

54 That
(
ATA

)T
= ATA follows from the properties

of the transpose. Therefore,

(
ker
((
ATA

)T))⊥
=
(
ker
(
ATA

))⊥

Suppose ATAx = 0. Then
(
ATAx,x

)
= (Ax,Ax)

and so Ax = 0. Therefore,

(
ATb,x

)
= (b,Ax) = (b,0) = 0

It follows that ATb ∈
(
ker
((
ATA

)T))⊥
and so

there exists a solution x to the equation

ATAx = ATb

by the Fredholm alternative.

55

|b−Ay|2

= |b−Ax+Ax−Ay|2

= |b−Ax|2 + |Ax−Ay|2

+2 (b−Ax,A (x− y))

= |b−Ax|2 + |Ax−Ay|2

+2
(
ATb−ATAx, (x− y)

)

= |b−Ax|2 + |Ax−Ay|2

and so, Ax is closest to b out of all vectors Ay.

56 The dimension of Fn2

is n2. Therefore, there exist
scalars ck such that

n2∑

k=0

ckA
k = 0

Let p (λ) be the monic polynomial having smallest
degree such that p (A) = 0. If q (A) = 0 then from
the Euclidean algorithm,

q (λ) = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than the degree of
p (λ) or else r (λ) equals 0. However, if it is not zero,
you could plug in A and obtain

0 = q (A) = 0 + r (A)

and this would contradict the definition of p (λ) as
being the polynomial having smallest degree which
sends A to 0. Hence q (λ) = p (λ) l (λ) .
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C.9 Exercises 175

3

(
1
2 − 1

2

√
3

1
2

√
3 1

2

)

4

(
1
2

√
2 − 1

2

√
2

1
2

√
2 1

2

√
2

)

5

(
1
2

1
2

√
3

− 1
2

√
3 1

2

)

6

(
− 1

2 − 1
2

√
3

1
2

√
3 − 1

2

)

7

(
1
4

√
2
√
3 + 1

4

√
2 1

4

√
2− 1

4

√
2
√
3

1
4

√
2
√
3− 1

4

√
2 1

4

√
2
√
3 + 1

4

√
2

)

8

(
− 1

2 − 1
2

√
3

− 1
2

√
3 1

2

)

9

(
1
2 − 1

2

√
3

− 1
2

√
3 − 1

2

)(
− 1

2

√
3 − 1

2

− 1
2

1
2

√
3

)

16

(
1
4

√
2
√
3− 1

4

√
2 − 1

4

√
2
√
3− 1

4

√
2

1
4

√
2
√
3 + 1

4

√
2 1

4

√
2
√
3− 1

4

√
2

)

17




1
2

√
3 − 1

2 0
1
2

1
2

√
3 0

0 0 −1




19 1
35




1 5 3
5 25 15
3 15 9




21

Tu (av+bw)

= av+bw− (av+bw · u)
|u|2

u

= av − a
(v · u)
|u|2

u+ bw−b (w · u)
|u|2

u

= aTu (v) + bTu (w)

25

(
a2 − b2 2ab
2ab b2 − a2

)

26

(
I − 2uuT

)T (
I − 2uuT

)

=
(
I − 2uuT

) (
I − 2uuT

)

= I − 2uuT − 2uuT + 4u

=1︷︸︸︷
uTuuT

= I

Now, why does this matrix preserve distance? For
short, call it Q and note that QTQ = I. Then

|x|2 =
(
QTQx,x

)
= (Qx,Qx) = |Qx|2

and so Q preserves distances.

27 From the above problem this preserves distances
and QT = Q. Now do it to x.

Q (x− y)

= x− y − 2
x− y

|x− y|2
·

(x− y,x− y)

= y − x

Q (x+ y) = x+ y − 2
x− y

|x− y|2
·

(x− y)
T
(x+ y)

= x+ y − 2
x− y

|x− y|2
(
|x|2 − |y|2

)

= x+ y

and so

Qx−Qy= y − x

Qx+Qy= x+ y

Hence, adding these yields Qx = y and then sub-
tracting them gives Qy = x.

28 Linear transformations take 0 to 0. Also

Ta (u+ v) ̸= Tau+ Tav.

31




−3t̂3
−t̂3
t̂3


+




0
−1
0


 , t̂3 ∈ R

33




3t̂
2t̂
t̂


+




−3
−1
0


 , t̂ ∈ R

35




−4t̂
−2t̂
t̂


+




0
−1
0


 , t̂ ∈ R.

37




−t̂
2t̂
t̂


+




−1
−1
0



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38




0
−t̂
−t̂
t̂


 , t̂ ∈ R

39




0
−t̂
−t̂
t̂


+




2
−1
−1
0




41




−t̂
t̂
t̂
0


+




−8
5
0
5




43 A basis is








−1
1
2
0


 ,




−1
1
0
1








48

s




−2
−1/2
1
0
0




+ t




−1
−1/2
0
1
0




+w




1
−1
0
0
1




+




4
7/2
0
0
0




51 If x,y ∈ ker (A) then

A (ax+by) = aAx+ bAy = a0+ b0 = 0

and so ker (A) is closed under linear combinations.
Hence it is a subspace.

C.10 Exercises 190

1




1 2 0
2 1 3
1 2 3


 =




1 0 0
2 1 0
1 0 1






1 2 0
0 −3 3
0 0 3




3




1 −2 −5 0
−2 5 11 3
3 −6 −15 1


 =




1 0 0
−2 1 0
3 0 1






1 −2 −5 0
0 1 1 3
0 0 0 1




5




1 −3 −4 −3
−3 10 10 10
1 −6 2 −5


 =




1 0 0
−3 1 0
1 −3 1






1 −3 −4 −3
0 1 −2 1
0 0 0 1




7




3 −2 1
9 −8 6
−6 2 2
3 2 −7


 =




1 0 0 0
3 1 0 0
−2 1 1 0
1 −2 −2 1







3 −2 1
0 −2 3
0 0 1
0 0 0


 .

9




−1 −3 −1
1 3 0
3 9 0
4 12 16


 =




1 0 0 0
−1 1 0 0
−3 0 1 0
−4 0 −4 1







−1 −3 −1
0 0 −1
0 0 −3
0 0 0




11 An LU factorization of the coefficient matrix is



1 2 1
0 1 3
2 3 0




=




1 0 0
0 1 0
2 −1 1






1 2 1
0 1 3
0 0 1




First solve



1 0 0
0 1 0
2 −1 1






u
v
w




=




1
2
6




which yields u = 1, v = 2, w = 6. Next solve



1 2 1
0 1 3
0 0 1






x
y
z




=




1
2
6



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This yields z = 6, y = −16, x = 27.

14

(
0 1
0 1

)
=

(
1 0
1 1

)(
0 1
0 0

)

(
0 1
0 1

)
=

(
1 0
0 1

)(
0 1
0 1

)

15




1 2 1
1 2 2
2 1 1


 =




1 0 0
0 0 1
0 1 0






1 0 0
2 1 0
1 0 1


 ·




1 2 1
0 −3 −1
0 0 1




17




1 2 1
1 2 2
2 4 1
3 2 1


 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







1 0 0 0
3 1 0 0
2 0 1 0
1 0 −1 1


 ·




1 2 1
0 −4 −2
0 0 −1
0 0 0




20




1
11

√
11 13

66

√
2
√
11 − 1

6

√
2

3
11

√
11 − 5

66

√
2
√
11 − 1

6

√
2

1
11

√
11 1

33

√
2
√
11 2

3

√
2


 ·




√
11 − 4

11

√
11 6

11

√
11

0 6
11

√
2
√
11 2

11

√
2
√
11

0 0
√
2




22 You would have QRx = b and so then you would
have Rx = QTb. Now R is upper triangular and so
the solution of this problem is fairly simple.

C.11 Exercises 214

1 The minimum is −11/2 and it occurs when x1 =
x3 = x6 = 0 and x2 = 7/2, x4 = 13/2, x6 = −11/2.

The maximum is 7 and it occurs when x1 = 7, x2 =
0, x3 = 0, x4 = 3, x5 = 5, x6 = 0.

2 Maximize and minimize the following if possible.
All variables are nonnegative.

(a) The maximum is 7 when x1 = 7 and x1, x3 =
0.

The minimum is −7 and it happens when x1 =
0, x2 = 7/2, x3 = 0.

(b) The minimum is −21 and it occurs when x1 =
x2 = 0, x3 = 7.

The maximum is 7 and it occurs when x1 =
7, x2 = 0, x3 = 0.

(c) The minimum is 0 and it occurs when x1 =
x2 = 0, x3 = 1.

The maximum is 14 and it happens when x1 =
7, x2 = x3 = 0.

(d) The maximum is 7 and it happens when x2 =
7/2, x3 = x1 = 0.

The minimum is 0 when x1 = x2 = 0, x3 = 1.

4 Find solutions if possible.

(a) There is no solution to these inequalities with
x1, x2 ≥ 0.

(b) A solution is x1 = 8/5, x2 = x3 = 0.

(c) No solution to these inequalities for which all
the variables are nonnegative.

(d) There is a solution when x2 = 2, x3 = 0, x1 =
0.

(e) There is no solution.

C.12 Exercises 239

3 If it did have λ ∈ R as an eigenvalue, then there
would exist a vector x such that Ax = λx for λ a
real number. Therefore, Ax and x would need to
be parallel. However, this doesn’t happen because
A rotates the vectors.

5 Amx = λmx for any integer. In the case of −1,

A−1λx = AA−1x = x

so A−1x = λ−1x. Thus the eigenvalues of A−1 are
just λ−1 where λ is an eigenvalue of A.

7 Let x be the eigenvector. Then Amx = λmx,Amx =
Ax = λx and so

λm = λ

Hence if λ ̸= 0, then

λm−1 = 1

and so |λ| = 1.
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9 eigenvectors:





3
1
1



 ↔ 1,





2
1
1



 ↔ 2. This is a

defective matrix.

11 eigenvectors:








−2
1
0


 ,




5
0
1





↔ −1,








2
1
1





↔ 2

This matrix is not defective because, even though
λ = 1 is a repeated eigenvalue, it has a 2 dimen-
sional eigenspace.

13 eigenvectors:








1
0
0


 ,




0
− 1

2
1





↔ 3,








−1
1
1





↔ 6

This matrix is not defective.

15 eigenvectors:








− 1
3
1
0


 ,




5
6
0
1





↔ −1

This matrix is defective. In this case, there is only
one eigenvalue, −1 of multiplicity 3 but the dimen-
sion of the eigenspace is only 2.

18 eigenvectors:








3
4
1
4
1





↔ 0 This one is defective.

19 eigenvectors:








3
4
1
4
1





↔ 1

This is defective.

21 eigenvectors:






1
−1
1





↔ 4,








−i
−i
1







↔ 2− 2i,








i
i
1





↔ 2 + 2i

23 eigenvectors:






1
−1
1





↔ 4,








−i
−i
1





↔ 2− 2i,








i
i
1





↔ 2 + 2i This matrix is not defective.

25 eigenvectors:






1
−1
1





↔ −6,








−i
−i
1





↔ 2− 6i,








i
i
1





↔ 2 + 6i

This is not defective.

27 The characteristic polynomial is of degree three and
it has real coefficients. Therefore, there is a real
root and two distinct complex roots. It follows that
A cannot be defective because it has three distinct
eigenvalues.

29 eigenvectors:

{(
−i
1

)}
↔ −i,

{(
i
1

)}
↔ i

31 eigenvectors:








0
0
1





↔ −1,








1
0
0


 ,




0
1
0





↔ 1

33 eigenvectors:








0
0
1





↔ 1,








1
1
0





↔ 2,








−1
1
0





↔ 3

35 In terms of percentages in the various locations,



21. 429
21. 429
57. 143



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37 Obviously A cannot be onto because the range of
A has dimension 1 and the dimension of this space
should be 3 if the matrix is onto. Therefore, A can-
not be invertible. Its row reduced echelon form can-
not be I since if it were, A would be onto. Aw = w

so it has an eigenvalue equal to 1. Now suppose
Ax = λx. Thus, from the Cauchy Schwarz inequal-
ity,

|x| =
|x| |w|
|w|2

|w|

≥ |(x,w)|
|w|2

|w| = |λ| |x|

and so |λ| ≤ 1.

39 Since the vectors are linearly independent, the ma-
trix S has an inverse. Denoting this inverse by

S−1 =




wT
1
...

wT
n




it follows by definition that

wT
i xj = δij .

Therefore,

S−1MS = S−1 (Mx1, · · · ,Mxn)

=




wT
1
...

wT
n


 (λ1x1, · · · , λnxn)

=




λ1 0
. . .

0 λn




41 The diagonally dominant condition implies that none
of the Gerschgorin disks contain 0. Therefore, 0 is
not an eigenvalue. Hence A is one to one, hence
invertible.

43 First note that (AB)
∗
= B∗A∗. SayMx = λx,x ̸= 0.

Then

λ |x|2 = λx∗x = (λx)
∗
x

= (Mx)
∗
x = x∗M∗x

= x∗Mx = x∗λx = λ |x|2

Hence λ = λ.

46 Suppose A is skew symmetric. Then what about
iA?

(iA)
∗
= −iA∗ = −iAT = iA

and so iA is self adjoint. Hence it has all real eigen-
values. Therefore, the eigenvalues of A are all of
the form iλ where λ is real. Now what about the
eigenvectors? You need

Ax = iλx

where λ ̸= 0 is real and A is real. Then

ARe (x) = iλRe (x)

The left has all real entries and the right has all
pure imaginary entries. Hence Re (x) = 0 and so x

has all imaginary entries.

C.13 Exercises 276

1 a. orthogonal and transformation, b. symmetric, c.
skew symmetric.

4 ∥Ux∥2 = (Ux, Ux)

=
(
UTUx,x

)
= (Ix,x) = ∥x∥2

Next suppose distance is preserved by U. Then

(U (x+ y) , U (x+ y))

= ∥Ux∥2 + ∥Uy∥2 + 2 (Ux,Uy)

= ∥x∥2 + ∥y∥2 + 2
(
UTUx,y

)

But since U preserves distances, it is also the case
that

(U (x+ y) , U (x+ y))

= ∥x∥2 + ∥y∥2 + 2 (x,y)

Hence
(x,y) =

(
UTUx,y

)

and so ((
UTU − I

)
x,y

)
= 0

Since y is arbitrary, it follows that UTU − I = 0.
Thus U is orthogonal.

5 (
x y z

)
·




a1 a4/2 a5/2
a4/2 a2 a6/2
a5/2 a6/2 a3






x
y
z



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7 If A is symmetric, then A = UTDU for some D a
diagonal matrix in which all the diagonal entries are
non zero. Hence A−1 = U−1D−1U−T . Now

U−1U−T =
(
UTU

)−1

= I−1 = I

and so A−1 = QD−1QT , where Q is orthogonal. Is
this thing on the right symmetric? Take its trans-
pose. This is QD−1QT which is the same thing, so
it appears that a symmetric matrix must have sym-
metric inverse. Now consider raising it to a power.

Ak = UTDkU

and the right side is clearly symmetric.

9 Yes.

11 eigenvectors:








1
0
0





↔ c,








0
−i
1





↔ −ib,








0
i
1





↔ ib

12 eigenvectors:








0
−i
1





↔ a− ib,








0
i
1





↔ a+ ib,








1
0
0





↔ c

13 eigenvectors:



1√
3




1
1
1





↔ 6,





1√
2




−1
1
0





↔ 12,





1√
6




−1
−1
2





↔ 18

15
λxTx = (Ax)

T
x

(CD)T=DTCT

= xTAx
A is real

= xTAx

λ is eigenvalue
= xTλx = λxTx

and so λ = λ. This shows that all eigenvalues are
real. It follows all the eigenvectors are real. Why?

Because A is real. Ax = λx, Ax = λx, so x+x is
an eigenvector. Hence it can be assumed all eigen-
vectors are real.

Now let x,y, µ and λ be given as above.

λ (x · y) = λx · y
= Ax · y = x ·Ay
= x·µy = µ (x · y)
= µ (x · y)

and so
(λ− µ)x · y = 0.

Since λ ̸= µ, it follows x · y = 0.

17

λx · x = Ax · x A Hermitian
= x·Ax

= x·λx
rule for complex inner product

= λx · x
and so λ = λ. This shows that all eigenvalues are
real. Now let x,y, µ and λ be given as above.

λ (x · y) = λx · y = Ax · y =

x ·Ay= x·µy
rule for complex inner product

= µ (x · y)
= µ (x · y)

and so
(λ− µ)x · y = 0.

Since λ ̸= µ, it follows x · y = 0.

19 Certainly not.

(
1 3
0 2

)

29 eigenvectors:







− 1
6

√
6

− 1
6

√
6

1
3

√
2
√
3





↔ 6,








− 1
2

√
2

1
2

√
2

0





↔ 12,
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






1
3

√
3

1
3

√
3

1
3

√
3





↔ 18.

The matrix U has these as its columns.

34 eigenvectors:







− 1
3

√
3

0
1
3

√
2
√
3





↔ 0,








1
3

√
3

− 1
2

√
2

1
6

√
6





↔ 1,








1
3

√
3

1
2

√
2

1
6

√
6





↔ 2. The columns are these vectors.

37 If A is given by the formula, then

AT = UTDTU = UTDU = A

Next suppose A = AT . Then by the theorems on
symmetric matrices, there exists an orthogonal ma-
trix U such that

UAUT = D

for D diagonal. Hence

A = UTDU

39 There exists U unitary such that A = U∗TU such
that T is uppser triangular. Thus A and T are
similar. Hence they have the same determinant.
Therefore, det (A) = det (T ) , but det (T ) equals the
product of the entries on the main diagonal which
are the eigenvalues of A.

43

(
2
3
1
3

)

44 y = −0.125x2 + 1. 425x+ 0.925

46 Find an orthonormal basis for the spans of the fol-
lowing sets of vectors.

(a) (3,−4, 0) , (7,−1, 0) , (1, 7, 1).


3/5
−4/5
0


 ,




4/5
3/5
0


 ,




0
0
1




(b) (3, 0,−4) , (11, 0, 2) , (1, 1, 7)


3
5
0
− 4

5


 ,




4
5
0
3
5


 ,




0
1
0




(c) (3, 0,−4) , (5, 0, 10) , (−7, 1, 1)


3
5
0
− 4

5


 ,




4
5
0
3
5


 ,




0
1
0




47



1
6

√
6

1
3

√
6

1
6

√
6


 ,




3
10

√
2

− 2
5

√
2

1
2

√
2




,




7
15

√
3

− 1
15

√
3

− 1
3

√
3




49



1
5

√
5

0
2
5

√
5


 ,




− 3
35

√
5
√
14

1
14

√
5
√
14

3
70

√
5
√
14




51 It satisfies the properties of an inner product. Note
that

trace (AB∗) =
∑

i

∑

k

AikBik

=
∑

k

∑

i

AikBik

= trace (BA∗)

so
(A,B)F = (B,A)F

The product is obviously linear in the first argu-
ment. If (A,A)F = 0, then

∑

i

∑

k

AikAik =
∑

i,k

|Aik|2 = 0

52 From the singular value decomposition,

U∗AV =

(
σ 0
0 0

)
,

A = U

(
σ 0
0 0

)
V ∗
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Then

trace (AA∗)

= trace

(
U

(
σ 0
0 0

)
V ∗·

V

(
σ 0
0 0

)
U∗
)

= trace

(
U

(
σ2 0
0 0

)
U∗
)

= trace

(
σ2 0
0 0

)
=
∑

j

σ2
j

53 trace (AB) =
∑

i

∑
k AikBki,

trace (BA) =
∑

i

∑
k BikAki. These give the same

thing. Now

trace (A) = trace
(
S−1BS

)

= trace
(
BSS−1

)
= trace (B) .

C.14 Exercises 296

1




0.39
−0.09
0.53




2




5. 319 1× 10−2

7. 446 8× 10−2

0.712 77




5




0.143 94
0.939 39
0.280 3




6




0.205 21
0.117 26

−2. 605 9× 10−2




7 It indicates that they are no good for doing it.

C.15 Exercises 322

1 The actual largest eigenvalue is 8 with correspond-

ing eigenvector




−1
1
1




4 The largest eigenvalue is −16 and an eigenvector is


1
−2
1


 .

5 Eigenvalue near −1.35 : λ = −1. 341,


1.0
−0.456 06
−0.476 32




Eigenvalue near 1.5: λ = 1. 679 0,


0.867 41
5. 586 9
−3. 528 2




Eigenvalue near 6.5: λ = 6. 662,


4. 405 2
3. 213 6
6. 171 7




8 Eigenvalue near −1 : λ = −0.703 69,


3. 374 9
−1. 265 3
0.155 75




Eigenvalue near .25 : λ = 0.189 11,


−0.242 20
−0.522 91

1.0




Eigenvalue near 7.5 : λ = 7. 514 6,


0.346 92
1.0

0.606 92




10 ∣∣∣∣λ− 22

3

∣∣∣∣ ≤
1

3

√
2

12 From the bottom line, a lower bound is −10 From
the second line, an upper bound is 12.

C.16 Exercises 326

1 The hint is a good suggestion. Pick the first thing
in S. By the Archimedean property, S ̸= ∅. That
is km > n for all k sufficiently large. Call this first
thing q+1. Thus n− (q + 1)m < 0 but n−qm ≥ 0.
Then

n− qm < m

and so
0 ≤ r ≡ n− qm < m.

2 First note that either m or −m is in S so S is a
nonempty set of positive integers. By well ordering,
there is a smallest element of S, called p = x0m +
y0n. Either p divides m or it does not. If p does not
divide m, then by the above problem,

m = pq + r
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where 0 < r < p. Thus

m = (x0m+ y0n) q + r

and so, solving for r,

r = m (1− x0) + (−y0q)n ∈ S.

However, this is a contradiction because p was the
smallest element of S. Thus p|m. Similarly p|n.Now
suppose q divides both m and n. Then m = qx and
n = qy for integers, x and y. Therefore,

p = mx0 + ny0 = x0qx+ y0qy

= q (x0x+ y0y)

showing q|p. Therefore, p = (m,n) .

3 Suppose r is the greatest common divisor of p and
m. Then if r ̸= 1, it must equal p because it must
divide p. Hence there exist integers x, y such that

p = xp+ ym

which requires that p must divide m which is as-
sumed not to happen. Hence r = 1 and so the two
numbers are relatively prime.

4 The only substantive issue is why Zp is a field. Let
[x] ∈ Zp where [x] ̸= [0]. Thus x is not a multiple
of p. Then from the above problem, x and p are
relatively prime. Hence from another of the above
problems, there exist integers a, b such that

1 = ap+ bx

Then
[1− bx] = [ap] = 0

and it follows that

[b] [x] = [1]

so [b] = [x]
−1

.

C.17 Exercises 345

1 No. (1, 0, 0, 0) ∈M but 10 (1, 0, 0, 0) /∈M.

3 If not, you could add in a vector not in their span
and obtain 6 vectors which are linearly independent.
This cannot occur thanks to the exchange theorem.

10 For each x ∈ [a, b] , let fx (x) = 1 and fx (y) = 0
if y ̸= x. Then these vectors are obviously linearly
independent.

12 A field also has multiplication. However, you can
consider the elements of the field as vectors and then
it satisfies all the vector space axioms. When you
multiply a number (vector) in R by a scalar in Q
you get something in R. All the axioms for a vector
space are now obvious. For example, if α ∈ Q and
x, y ∈ R,

α (x+ y) = αx+ αy

from the distributive law on R.

13 Simply let f (i) be the ith component of a vector x ∈
Fn. Thus a typical thing in Fn is (f (1) , · · · , f (n)).

14 Say for some n,
∑n

k=1 ckek = 0, the zero function.
Then pick i,

0 =
n∑

k=1

ckek (i)

= ciei (i) = ci

Since i was arbitrary, this shows these vectors are
linearly independent.

15 Say
n∑

k=1

ckyk = 0

Then taking derivatives you have

n∑

k=1

cky
(j)
k = 0, j = 0, 1, 2 · · · , n− 1

This must hold when each equation is evaluated at
x where you can pick the x at which the above de-
terminant is nonzero. Therefore, this is a system of
n equations in n variables, the ci and the coefficient
matrix is invertible. Therefore, each ci = 0.

19 Which are linearly independent?

(a) These are linearly independent.

(b) These are also linearly independent.

21 This is obvious because when you add two of these
you get one and when you multiply one of these by
a scalar, you get another one. A basis is

{
1,
√
2
}
.

By definition, the span of these gives the collection
of vectors. Are they independent? Say a+ b

√
2 = 0

where a, b are rational numbers. If a ̸= 0, then
b
√
2 = −a which can’t happen since a is rational.

If b ̸= 0, then −a = b
√
2 which again can’t happen

because on the left is a rational number and on the
right is an irrational. Hence both a, b = 0 and so
this is a basis.
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29 Consider the claim about lnσ.

1eln(σ) + (−1)σe0 = 0

The equation shown does hold from the definition
of lnσ. However, if lnσ were algebraic, then elnσ, e0

would be linearly dependent with field of scalars
equal to the algebraic numbers, contrary to the Lin-
demann Weierstrass theorem. The other instances
are similar. In the case of cosσ, you could use the
identity

1

2
eiσ +

1

2
e−iσ − e0 cosσ = 0

contradicting independence of

eiσ, e−iσ, e0.

C.18 Exercises 363

1 I will show one of these. Verify that Examples 16.5.1
- 16.5.4 are each inner product spaces.

First consider Example 16.5.1. All of the axioms of
the inner product are obvious except one, the one
which says that if ⟨f, f⟩ = 0 then f = 0. This one
depends on continuity of the functions. Suppose
then that it is not true. In other words, ⟨f, f⟩ = 0
and yet f ̸= 0. Then for some x ∈ I, f (x) ̸= 0.
By continuity, there exists δ > 0 such that if y ∈
I ∩ (x− δ, x+ δ) ≡ Iδ, then

|f (y)− f (x)| < |f (x)| /2
It follows that for y ∈ Iδ,

|f (y)| > |f (x)| − |f (x) /2| = |f (x)| /2.
Hence

⟨f, f⟩ ≥
∫

Iδ

|f (y)|2 p (x) dy

≥
(
|f (x)|2 /2

)
(length of Iδ) (min (p))

> 0,

a contradiction. Note that min p > 0 because p
is a continuous function defined on a closed and
bounded interval and so it achieves its minimum by
the extreme value theorem of calculus.

2 ∣∣∣∣
∫

I

f (x) g (x)p (x) dx

∣∣∣∣

≤
(∫

I

|f (x)|2 p (x) dx
)1/2

·
(∫

I

|g (x)|2 p (x) dx
)1/2

∣∣∣∣∣

n∑

k=0

f (xk) g (xk)

∣∣∣∣∣

≤
(

n∑

k=0

|f (xk)|2
)1/2( n∑

k=0

|g (xk)|2
)1/2

∣∣∣∣∣

n∑

k=1

ukwk

∣∣∣∣∣ ≤
(

n∑

k=1

|uk|2
)1/2( n∑

k=1

|wk|2
)1/2

where u =
∑

k ukvk and w =
∑

k wkvk.

∣∣∣∣∣

∞∑

k=1

akbk

∣∣∣∣∣ ≤
( ∞∑

k=1

|ak|2
)1/2( ∞∑

k=1

|bk|2
)1/2

5 It might be the case that ⟨z, z⟩ = 0 and yet z ̸= 0.
Just let z =(z1, · · · , zn) where exactly p of the zi
equal 1 but the remaining are equal to 0. Then
⟨z, z⟩ would reduce to 0 in the integers mod p. An-
other problem is the failure to have an order on Zp.
Consider first Z2. Is 1 positive or negative? If it is
positive, then 1 + 1 would need to be positive. But
1 + 1 = 0 in this case. If 1 is negative, then −1
is positive, but −1 is equal to 1. Thus 1 would be
both positive and negative. You can consider the
general case where p > 2 also. Simply take a ̸= 1.
If a is positive, then consider a, a2, a3 · · · . These
would all have to be positive. However, eventually
a repeat will take place. Thus an = am m < n, and
so am

(
ak − 1

)
= 0 where k = n−m. Since am ̸= 0,

it follows that ak = 1 for a suitable k. It follows
that the sequence of powers of a must include each
of {1, 2, · · · , p− 1} and all these would therefore,
be positive. However, 1 + (p− 1) = 0 contradict-
ing the assertion that Zp can be ordered. So what
would you mean by saying ⟨z, z⟩ ≥ 0? The Cauchy
Schwarz inequality would not even apply.

7 In an inner product space, an open ball is the setLet
δ = r − |z− x| . Then if y ∈ B (z, δ) ,

|y − x| ≤ |y − z|+ |z− x| < δ + |z− x|
= r − |z− x|+ |z− x| = r

and so B (z, δ) ⊆ B (x,r).

8
(

1
2

√
2 1

2

√
2
√
3x 3

4

√
2
√
5x2 − 1

4

√
2
√
5
)

9 Let y go with λ and z go with µ.

z (p (x) y′)
′
+ (λq (x) + r (x)) yz = 0

y (p (x) z′)
′
+ (µq (x) + r (x)) zy = 0
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Subtract.

z (p (x) y′)
′ − y (p (x) z′)

′
+ (λ− µ) q (x) yz = 0

Now integrate from a to b. First note that

z (p (x) y′)
′−y (p (x) z′)′ = d

dx
(p (x) y′z − p (x) z′y)

and so what you get is

p (b) y′ (b) z (b)− p (b) z′ (b) y (b)

− (p (a) y′ (a) z (a)− p (a) z′ (a) y (a))

+ (λ− µ)

∫ b

a

q (x) y (x) z (x) dx = 0

Look at the stuff on the top line. From the assump-
tions on the boundary conditions,

C1y (a) + C2y
′ (a) = 0

C1z (a) + C2z
′ (a) = 0

and so
y (a) z′ (a)− y′ (a) z (a) = 0

Similarly,

y (b) z′ (b)− y′ (b) z (b) = 0

Hence, that stuff on the top line equals zero and so
the orthogonality condition holds.

11
∑5

k=1
2(−1)k+1

k sin (kx)

12 1
2π −∑2

k=0
4

(2k+1)2π
cos ((2k + 1)x)

13
∑5

k=1
4
k2 (−1)

k
cos (kx) + π2

3

15 |∑n
i=1 xiyii| ≤

(∑n
i=1 x

2
i i
)1/2 (∑n

i=1 y
2
i i
)1/2

16

ei(t/2)Dn (t) =
1

2π

n∑

k=−n

ei(k+(1/2))t

ei(−t/2)Dn (t) =
1

2π

n∑

k=−n

ei(k−(1/2))t

=
1

2π

n−1∑

k=−(n+1)

ei(k+(1/2))t

Dn (t)
(
ei(t/2) − e−i(t/2)

)

=
1

2π

(
ei(n+(1/2))t − e−i(n+(1/2))t

)
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Dn (t) 2i sin (t/2) =
1

2π
2i sin

((
n+

1

2

)
t

)

Dn (t) =
1

2π

sin
(
t
(
n+ 1

2

))

sin
(
1
2 t
)

You know that t→ Dn (t) is periodic of period 2π.
Therefore, if f (y) = 1,

Snf (x) =

∫ π

−π

Dn (x− y) dy =

∫ π

−π

Dn (t) dt

However, it follows directly from computation that
Snf (x) = 1. Just take the integral of the sum which
defines Dn.

17 From Lemma 16.5.11 and Theorem 16.5.12
⟨
y −

n∑

k=1

⟨y,uk⟩uk,w

⟩
= 0

for all w ∈ span ({ui}ni=1) . Therefore,

|y|2 =

∣∣∣∣∣y−
n∑

k=1

⟨y,uk⟩uk +

n∑

k=1

⟨y,uk⟩uk

∣∣∣∣∣

2

Now if ⟨u,v⟩ = 0, then you can see right away from
the definition that

|u+ v|2 = |u|2 + |v|2

Applying this to

u = y−
n∑

k=1

⟨y,uk⟩uk,

v =

n∑

k=1

⟨y,uk⟩uk,

the above equals

=

∣∣∣∣∣y−
n∑

k=1

⟨y,uk⟩uk

∣∣∣∣∣

2

+

∣∣∣∣∣

n∑

k=1

⟨y,uk⟩uk

∣∣∣∣∣

2

=

∣∣∣∣∣y−
n∑

k=1

⟨y,uk⟩uk

∣∣∣∣∣

2

+
n∑

k=1

|⟨y,uk⟩|2 ,

the last step following because of similar reason-
ing to the above and the assumption that the uk

are orthonormal. It follows the sum
∑∞

k=1 |⟨y,uk⟩|2
converges and so limk→∞ ⟨y,uk⟩ = 0 because if a
series converges, then the kth term must converge
to 0.

18 Let f be any piecewise continuous function which
is bounded on [−π, π] . Show, using the above prob-
lem, that

lim
n→∞

∫ π

−π

f (t) sin (nt) dt

= lim
n→∞

∫ π

−π

f (t) cos (nt) dt = 0

Let the inner product space consist of piecewise con-
tinuous bounded functions with the inner product
defined by

⟨f, g⟩ ≡
∫ π

−π

f (x) g (x)dx

Then, from the above problem and the fact shown

earlier that
{

1√
2π
eikx

}
k∈Z

form an orthonormal set

of vectors in this inner product space, it follows that

lim
n→∞

⟨
f, einx

⟩
= 0

without loss of generality, assume that f has real
values. Then the above limit reduces to having both
the real and imaginary parts converge to 0. This
implies the thing which was desired. Note also that
if α ∈ [−1, 1] , then

lim
n→∞

∫ π

−π

f (t) sin ((n+ α) t) dt = lim
n→∞

∫ π

−π

f (t) [sin (nt) cosα+ cos (nt) sinα] dt = 0

19 From the definition of Dn,

Snf (x) =

∫ π

−π

f (x− y)Dn (y) dy

Now observe that Dn is an even function. There-
fore, the formula equals

Snf (x) =

∫ π

0

f (x− y)Dn (y) dy

+

∫ 0

−π

f (x− y)Dn (y) dy

=

∫ π

0

f (x− y)Dn (y) dy

+

∫ π

0

f (x+ y)Dn (y) dy

=

∫ π

0

f (x+ y) + f (x− y)

2
2Dn (y) dy
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Now note that
∫ π

0
2Dn (y) = 1 because

∫ π

−π

Dn (y) dy = 1

and Dn is even. Therefore,
∣∣∣∣Snf (x)−

f (x+) + f (x−)

2

∣∣∣∣ =
∣∣∣∣
∫ π

0

2Dn (y) ·

f (x+ y)− f (x+) + f (x− y)− f (x−)

2
dy

∣∣∣∣

From the formula for Dn (y) given earlier, this is
dominated by an expression of the form

C

∣∣∣∣
∫ π

0

f (x+ y)− f (x+) + f (x− y)− f (x−)

sin (y/2)
·

sin ((n+ 1/2) y)dy
∣∣∣

for a suitable constant C. The above is equal to

C

∣∣∣∣∣

∫ π

0

y

sin
(
y
2

) ·

f (x+ y)− f (x+) + f (x− y)− f (x−)

y

sin ((n+ 1/2) y)dy
∣∣∣

and the expression y
sin(y/2) equals a bounded con-

tinuous function on [0, π] except at 0 where it is
undefined. This follows from elementary calculus.
Therefore, changing the function at this single point
does not change the integral and so we can consider
this as a continuous bounded function defined on
[0, π] . Also, from the assumptions on f,

y → f (x+ y)− f (x+) + f (x− y)− f (x−)

y

is equal to a piecewise continuous function on [0, π]
except at the point 0. Therefore, the above integral
converges to 0 by the previous problem. This shows
that the Fourier series generally tries to converge to
the midpoint of the jump.

20
π

4
= lim

n→∞

n∑

k=1

(−1)
k+1

2k − 1

You could also find the Fourier series for x2 instead
of x and get

lim
n→∞

n∑

k=1

4

k2
(−1)

k
cos (kx) +

π2

3
= x2

because the periodic extension of this function is
continuous. Let x = 0

lim
n→∞

n∑

k=1

4

k2
(−1)

k
+
π2

3
= 0

and so

π2

3
= lim

n→∞

n∑

k=1

4

k2
(−1)

k+1

≡
∞∑

k=1

4

k2
(−1)

k+1

This is one of those calculus problems where you
show it converges absolutely by the comparison test
with a p series. However, here is what it converges
to.

21 Consider for t ∈ [0, 1] the following.

|y − (x+ t (w − x))|2

where w ∈ K and x ∈ K. It equals

f (t) = |y − x|2 + t2 |w − x|2 − 2tRe ⟨y − x,w − x⟩
Suppose x is the point of K which is closest to y.
Then f ′ (0) ≥ 0. However,

f ′ (0) = −2Re ⟨y − x,w − x⟩ .
Therefore, if x is closest to y,

Re ⟨y − x,w − x⟩ ≤ 0.

Next suppose this condition holds. Then you have

|y − (x+ t (w − x))|2 ≥
|y − x|2 + t2 |w − x|2 ≥ |y − x|2

By convexity of K, a generic point of K is of the
form x+t (w − x) for w ∈ K. Hence x is the closest
point.

22

|x+ y|2 + |x− y|2

= |x|2 + |y|2 + 2Re ⟨x,y⟩
+ |x|2 + |y|2 − 2Re ⟨x,y⟩

= 2 |x|2 + 2 |y|2

Of course the same reasoning yields

1

4

(
|x+ y|2 − |x− y|2

)

=
1

4

(
|x|2 + |y|2 + 2 ⟨x,y⟩

−
(
|x|2 + |y|2 − 2 ⟨x,y⟩

))

= ⟨x,y⟩
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23 Let xk be a minimizing sequence. The connection
between xk and ck ∈ Fk is obvious because the {uk}
are orthonormal. That is,

|xn − xm| = |cn − cm|
Fp .

where x ≡∑j cjuj . Use the parallelogram identity.

∣∣∣∣
y − xk − (y − xm)

2

∣∣∣∣
2

+

∣∣∣∣
y − xk + (y − xm)

2

∣∣∣∣
2

= 2

∣∣∣∣
y − xk

2

∣∣∣∣
2

+ 2

∣∣∣∣
y − xm

2

∣∣∣∣

Hence

1

4
|xm − xk|2

=
1

2
|y − xk|2

+
1

2
|y − xm|2 −

∣∣∣∣y−
xk + xm

2

∣∣∣∣
2

≤ 1

2
|y − xk|2 +

1

2
|y − xm|2 − λ2

Now the right hand side converges to 0 since {xk} is
a minimizing sequence. Therefore, {xk} is a Cauchy
sequence in U. Hence the sequence of component
vectors

{
ck
}

is a Cauchy sequence in Fn and so
it converges thanks to completeness of F. It follows
that {xk} also must converge to some x. Then since
K is closed, it follows that x ∈ K. Hence

λ = |x− y| .

24

⟨Px− Py,y − Py⟩ ≤ 0

⟨Py − Px,x− Px⟩ ≤ 0

Thus
⟨Px− Py,x− Px⟩ ≥ 0

Hence

⟨Px− Py,x− Px⟩ − ⟨Px− Py,y − Py⟩ ≥ 0

and so

⟨Px− Py,x− y − (Px− Py)⟩ ≥ 0

|x− y| |Px− Py| ≥
⟨Px− Py,Px− Py⟩ = |Px− Py|2

25 Let {uk}nk=1 be a basis for V and if x ∈ V, let xi
be the components of x relative to this basis. Thus
the xi are defined according to

∑

i

xiui = x

Then decree that {ui} is an orthonormal basis. It
follows

|x|2 =
∑

i

|xi|2 .

Now letting {xk} be a sequence of vectors of V let{
xk
}
denote the sequence of component vectors in

Fn. One direction is easy, saying that ∥x∥ ≤ ∆ |x| .
If this is not so, then there exists a sequence of
vectors {xk} such that

∥xk∥ > k |xk|

dividing both sides by ∥xk∥ it can be assumed that
1 > k |xk| =

∣∣xk
∣∣ . Hence xk → 0 in Fk. But from

the triangle inequality,

∥xk∥ ≤
n∑

i=1

xki ∥ui∥

Therefore, since limk→∞ xki = 0, this is a contradic-
tion to each ∥xk∥ = 1. It follows that there exists
∆ such that for all x,

∥x∥ ≤ ∆ |x|

Now consider the other direction. If it is not true,
then there exists a sequence {xk} such that

1

k
|xk| > ∥xk∥

Dividing both sides by |xk| , it can be assumed that
|xk| =

∣∣xk
∣∣ = 1. Hence, by compactness of the

closed unit ball in Fn, there exists a further sub-
sequence, still denoted by k such that xk → a ∈ Fn

and it also follows that |a|
Fn = 1. Also the above

inequality implies limk→∞ ∥xk∥ = 0. Therefore,

n∑

j=1

ajuj = lim
k→∞

n∑

j=1

xkjuj = lim
k→∞

xk = 0

which is a contradiction to the uj being linearly
independent. Therefore, there exists δ > 0 such
that for all x,

δ |x| ≤ ∥x∥ .
Now if you have any other norm on this finite di-
mensional vector space, say |||·||| , then from what
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was just shown, there exist scalars δi and ∆i all
positive, such that

δ1 |x| ≤ ∥x∥ ≤ ∆1 |x|
δ2 |x| ≤ |||x||| ≤ ∆2 |x|

It follows that

|||x||| ≤ ∆2

δ1
∥x∥ ≤

∆2∆1

δ1
|x| ≤ ∆2∆1

δ1δ2
|||x||| .

Hence
δ1
∆2

|||x||| ≤ ∥x∥ ≤ ∆1

δ2
|||x||| .

In other words, any two norms on a finite dimen-
sional vector space are equivalent norms. What this
means is that every consideration which depends on
analysis or topology is exactly the same for any two
norms. What might change are geometric proper-
ties of the norms.

C.19 Exercises 388

1

(
1
2 − 1

2

√
3

1
2

√
3 1

2

)

3

(
1
2 − 1

2

√
3

1
2

√
3 1

2

)(
1
2

√
2 − 1

2

√
2

− 1
2

√
2 1

2

√
2

)

=

(
1
4

√
2
√
3 + 1

4

√
2 − 1

4

√
2
√
3− 1

4

√
2

1
4

√
2
√
3− 1

4

√
2 1

4

√
2− 1

4

√
2
√
3

)

5

(
− 1

2
1
2

√
3

1
2

√
3 1

2

)

8 Let f ∈ L (V,F).

(a) If f = 0, the zero mapping, then fv = ⟨v,0⟩
for all v ∈ V .

⟨v,0⟩ = ⟨v,0+ 0⟩ = ⟨v,0⟩+ ⟨v,0⟩

so ⟨v,0⟩ = 0.

(b) If f ̸= 0 then there exists z ̸= 0 satisfying
⟨u, z⟩ = 0 for all u ∈ ker (f) .

ker (f) is a subspace and so there exists z1 /∈
ker (f) . Then there exists a closest point of
ker (f) to z1 called x. Then let z = z1 − x.
Thus ⟨u, z⟩ = 0 for all u ∈ ker (f).

(c) f (f (y) z− f (z)y) = f (y) f (z)−f (z) f (y) =
0.

(d)

0 = ⟨f (y) z− f (z)y, z⟩
= f (y) |z|2 − f (z) ⟨y, z⟩

and so

f (y) =

⟨
y,
f (z)

|z|2
z

⟩

so w = f(z)

|z|2 z appears to work.

(e) If w1,w2 both work, then for every y,

0 = f (y)− f (y) = ⟨y,w1⟩ − ⟨y,w2⟩
= ⟨y,w1 −w2⟩

Now let y = w1 −w2 and so w1 = w2.

9 It is required to show that A∗ is linear.

⟨y,A∗ (αz+ βw)⟩
≡ ⟨Ay,αz+ βw⟩
= α ⟨Ay, z⟩+ β ⟨Ay,w⟩
≡ α ⟨y,A∗z⟩+ β ⟨y,A∗w⟩
= ⟨y,αA∗z⟩+ ⟨y,βA∗w⟩
= ⟨y,αA∗z+ βA∗w⟩

Since y is arbitrary, this shows that A∗ is linear. In
case A is an m× n matrix as described,

A∗ = (AT )

11 The two operators D + 1 and D + 4 commute and
are each one to one on the kernel of the other. Also,
it is obvious that ker (D + a) consists of functions
of the form Ce−at. Therefore, ker (D + 1) (D + 4)
consists of functions of the form

y = C1e
−t + C2e

−4t

where C1, C2 are arbitrary constants. In other words,
a basis for ker (D + 1) (D + 4) is

{
e−t, e−4t

}
.

14 


1 2 2 0
0 1 4 6
0 0 1 6
0 0 0 1




17 It is obvious that x ∼ x. If x ∼ y, then y ∼ x is
also clear. If x ∼ y and y ∼ z, then

z− x = z− y + y − x
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and by assumption, both z− y and y − x ∈ ker (L)
which is a subspace. Therefore, z− x ∈ ker (L)
also and so ∼ is an equivalence relation. Are the
operations well defined? If [x] = [x′] , [y] = [y′] ,
is it true that [x+ y] = [y′ + x′]? Of course. x′ +
y′−(x+ y) = (x′ − x)+(y′ − y) ∈ ker (L) because
ker (L) is a subspace. Similar reasoning applies to
the case of scalar multiplication. Now why is A well
defined? If [x] = [x′] , is Lx = Lx′? Of course this
is so. x− x′ ∈ ker (L) by assumption. Therefore,
Lx = Lx′. It is clear also that A is linear. If A [x] =
0, then Lx = 0 and so x ∈ ker (L) and so [x] = 0.
Therefore, A is one to one. It is obviously onto
L (V ) =W.

19 An easy way to do this is to “unravel” the powers of
the matrix making vectors in Fn2

and then making
these the columns of a n2×nmatrix. Look for linear
relationships between the columns by obtaining the
row reduced echelon form and using Lemma 8.2.5.
As an example, consider the following matrix.




1 1 0
−1 0 −1
2 1 3




Lets find its minimal polynomial. We have the fol-
lowing powers




1 0 0
0 1 0
0 0 1


 ,




1 1 0
−1 0 −1
2 1 3


 ,




0 1 −1
−3 −2 −3
7 5 8


 ,




−3 −1 −4
−7 −6 −7
18 15 19




By the Cayley Hamilton theorem, I won’t need to
consider any higher powers than this. Now I will
unravel each and make them the columns of a ma-
trix. 



1 1 0 −3
0 1 1 −1
0 0 −1 −4
0 −1 −3 −7
1 0 −2 −6
0 −1 −3 −7
0 2 7 18
0 1 5 15
1 3 8 19




Next you can do row operations and obtain the row
reduced echelon form for this matrix and then look

for linear relationships.




1 0 0 2
0 1 0 −5
0 0 1 4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




From this and Lemma 8.2.5, you see that for A de-
noting the matrix,

A3 = 4A2 − 5A+ 2I

and so the minimal polynomial is

λ3 − 4λ2 + 5λ− 2

No smaller degree polynomial can work either. Since
it is of degree 3, this is also the characteristic poly-
nomial. Note how we got this without expanding
any determinants or solving any polynomial equa-
tions. If you factor this polynomial, you get

λ3 − 4λ2 + 5λ − 2 = (λ− 2) (λ− 1)
2
so this is an

easy problem, but you see that this procedure for
finding the minimal polynomial will work even when
you can’t factor the characteristic polynomial.

20 If two matrices are similar, then they must have the
same minimal polynomial. This is obvious from the
fact that for p (λ) any polynomial and A = S−1BS,

p (A) = S−1p (B)S

So what is the minimal polynomial of the diagonal
matrix shown? It is obviously

∏r
i=1 (λ− λi) . Thus

there are no repeated roots.

21 Show that if A is an n× n matrix and the minimal
polynomial has no repeated roots, then A is non
defective and there exists a basis of eigenvectors.
Thus, from the above problem, a matrix may be
diagonalized if and only if its minimal polynomial
has no repeated roots. It turns out this condition
is something which is relatively easy to determine.
Hint: You might want to use Theorem 17.3.1.

If A has a minimal polynomial which has no re-
peated roots, say

p (λ) =

m∏

j=1

(λ− λi) ,
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then from the material on decomposing into direct
sums of generalized eigenspaces, you have

Fn = ker (A− λ1I)⊕ ker (A− λ2I)⊕
· · · ⊕ ker (A− λmI)

and by definition, the basis vectors for ker (A− λ2I)
are all eigenvectors. Thus Fn has a basis of eigenvec-
tors and is therefore diagonalizable or non defective.
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∩, 11
∪, 11
σ(A), 375

Abel’s formula, 116
Abelian group, 325
adjoint, 262, 266
adjugate, 106, 128
algebraic multiplicity, 223
algebraic number

minimal polynomial, 343
algebraic numbers, 342

field, 344
angle between vectors, 41
area

parallelogram, 51
area of a parallelogram, 49
augmented matrix, 63
axioms for a norm, 47

back substitution, 63
barallelepiped

volume, 53
bases, 149
basic feasible solution, 196
basic variables, 70, 196
basis, 149, 327

any two same size, 330
basis of eigenvectors

diagonalizable, 228
bijective, 369
block matrix, 257
block multiplication, 257
box product, 53

Cartesian coordinates, 24
Cauchy Schwarz inequality, 39, 45
Cayley Hamilton theorem, 129, 244, 282
characteristic equation, 218
characteristic polynomial, 128
characteristic value, 218
classical adjoint, 106
codomain, 12
cofactor, 102, 126

cofactor matrix, 102
column rank, 141
column space, 141
companion matrix, 310, 323
complex conjugate, 16
complex eigenvalues, 232

shifted inverse power method, 309
complex numbers, 15, 16
complex numbers

arithmetic, 16
roots, 18
triangle inequality, 17

component, 34, 47
component of a force, 43
component of force, 43
components of a matrix, 78
components of a vector, 26
composition of linear transformations, 386
condition number, 296
conformable, 81
consistent, 72
Coordinates, 23
Cramer’s rule, 109, 128
cross product, 48, 49

area of parallelogram, 49
coordinate description, 50
distributive law, 51, 52, 54
geometric description, 49

cross product
coordinate description, 50
distributive law, 51
geometric description, 49
parallelepiped, 53

De Moivre’s theorem, 18
defective, 224
defective eigenvalue, 224
derivative, 298
determinant, 121

alternating property, 123
cofactor, 100
cofactor expansion, 125
expanding along row or column, 100
expansion along row (column), 126
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linear transformation, 384
matrix inverse formula, 106, 127
minor, 99
product, 104, 124
product of eigenvalues, 281
row operations, 103
transpose, 123

determinant rank
row rank, 157

diagonal matrix, 228, 243
diagonalizable, 227, 228, 243, 255, 384
differential equations

first order systems, 348
dimension, 149
dimension of vector space, 330
direct sum, 371
distance formula, 27
Dolittle’s method, 183
domain, 12
dot product, 39

properties, 39
dynamical system, 244

echelon form, 64, 65
eigenspace, 220
eigenvalue, 218, 375

existence, 373
eigenvalues, 129
eigenvector, 218
Einstein summation convention, 55
elementary matrices, 131
elementary matrix

inverse, 136
properties, 136

elementary operations, 62
empty set, 12
entries of a matrix, 78
equivalence class, 338, 382
equivalence relation, 338, 382
exchange theorem, 327

field extensions, 341
Field of scalars, 325
force, 32
Fourier coefficients, 358
Fredholm alternative, 155, 268
free variables, 70, 196
Frobinius norm, 282
function, 12
functions, 12
fundamental theorem of algebra, 20, 399

Gauss Elimination, 71

Gauss elimination, 63, 64
Gauss Jordan method for inverses, 89
Gauss Seidel, 288
Gauss Seidel method, 288
general solution, 175

solution space, 174
generalized eigenspace, 375

direct sum, 373
geometric multiplicity, 223
Gerschgorin’s theorem, 238
Gram Schmidt process, 261, 354
Grammian matrix, 355
greatest common divisor, 333

Hermitian, 264
homogeneous coordinates, 178
homogeneous syster, 174
homomorphism, 165
Householder matrix, 188
householder matrix, 177

inconsistent, 69, 72
independent set

extending to a basis, 151
independent set of vectors

extending to form a basis, 151
injective, 12, 369
inner produc

strange examplet, 47
inner product, 39, 45

axioms, 350
Cauchy Schwarz inequality, 352

inner product
properties, 45

integers mod a prime, 326
intersection, 11
intervals

notation, 11
inverse

left inverse, 128
right inverse, 128

inverses and determinants, 108, 127
invertible, 87
irreducible, 333
isomorphism, 165

Jacobi, 286
Jacobi method, 286
Jordan block, 391
joule, 44

ker, 173
kernel, 152, 173
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Kroneker delta, 54
Kroneker symbol, 87

Laplace expansion, 101, 125
leading entry, 64
least square approximation, 265
linear combination, 124, 137
linear independence

enlarging to form a basis, 331
equivalent conditions, 145

linear relationships, 138
finding them, 147

linear transformation, 165, 369
matrix, 167, 173

linear transformations
commuting, 372
dimension, 369

linear trnsformation
rotation, 166

linearly dependent, 327
linearly independent, 144, 327
linearly independent sets, 148
LU deomposition

non existence, 181
LU factorization

by inspection, 181
justification, 184
multipliers, 182
solving systems, 183

main diagonal, 102
Markov matrices, 235
matrices

more columns than rows, 139
multiplication, 81
one to one, onto, 157
similar, 227

matrix, 77
composition of linear transformations, 386
identity, 86
inverse, 87
invertible, product of elementary matrices, 158
left inverse, 128
left inverse, right inverse, 172
lower triangular, 102, 128
main diagonal, 228
one to one, onto, 172
raising to a power, 229
right inverse, 128
right inverse left inverse and inverse, 140
rotation, 167
rotation about given vector, 169
self adjoint, 243, 278

symmetric, 243
transpose, 85
upper triangular, 102, 128

matrix exponential, 232
matrix inverse

finding it, 89
matrix multiplication

ij entry, 83
properties, 84

matrix of linear transformation, 380
mean square approximation, 359
migration matrix, 235
minimal polynomial, 164, 374

computation, 390
uniqueness, 374

minimization and orthogonality, 357
minor, 102, 126
monic, 333
monic polynomial, 374
multipliers, 185

Newton, 35
nilpotent, 113, 378
non defective

minimal polynomial, 390
nondefective, 255
nondefective eigenvalue, 224
normed linear space, 353
normed vector space, 353
null space, 152, 173
nullity, 154

one to one, 12, 166
rank, 163

onto, 12, 167
open ball, 27
operator norm, 293
orthogonal matrix, 113, 177, 188, 247

switching two unit vectors, 188
orthogonal projection, 357
orthogonality and minimization, 265
orthonormal, 248, 260

independent, 354
orthonormal set, 353

p norms, 297
parallelepiped, 53
parallelogram identity, 367
particular solution, 173
partitioned matrix, 257
permutation matrices, 131
permutation symbol, 54

reduction identity, 55
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perp, 155
perpendicular, 42
pivot, 69
pivot column, 65, 138
pivot columns, 65
pivot position, 65
pivot positions, 65
PLU factorization, 186
points and vectors, 23
polar form complex number, 18
polarization identity, 367
polynomial, 332

degree, 332
divides, 333
equal, 332
Euclidean algorithm, 332
greatest common divisor, 333
greatest common divisor description, 333
greatest common divisor, uniqueness, 333
irreducible, 333
irreducible factorization, 334
relatively prime, 333
root, 332

polynomials
canceling, 335
factorization, 336

position vector, 25, 26, 33
power method, 299
preserving distance, 269
principle directions, 234
product of matrices

composition of linear transformations, 386
projection, 43, 97
projection of a vector, 43
projections

matrix, 171

QR decomposition, 261
QR factorization, 188, 189, 261

thin, 261

range, 12
rank

column determinant and row, 142
finding the rank, 143
linear transformation, 385

rank and singular values, 273
rank of a matrix, 141, 156
Rayleigh quotient, 310
reflection

across a given vector, 177
regression line, 267
regular Sturm Liouville problem, 364

relations
graph, 13

resultant, 34
right handed system, 48
right inverse, 89
right polar factorization, 269
rotations

about given vector, 386
row equivalent, 139
row operations, 64, 103, 131
row rank, 141
row reduced echelon form, 65, 137

existence, 137
uniqueness, 139

row space, 141

scalar product, 39
scalars, 24, 77
scaling factor, 299
Schur’s theorem, 262
set notation, 11
shifted inverse power method, 301

complex eigenvalues, 309
sign function, 119
similar matrices, 381
similarity

block diagonal matrix, 375
upper triangular block diagonal, 377

similarity and equivalence, 382
similarity relation, 227
similarity transformation, 381
simplex tableau, 196, 197
simultaneous corrections, 286
singular value decomposition, 272
singular values, 272
skew lines, 60
skew symmetric, 86, 93
slack variables, 196, 198
slope, 14, 15
solution space, 173
span, 124, 137, 327
spanning sets, 148
spectrum, 218
speed, 35
standard position, 33
strictly upper triangular, 391
Sturm Liouville problem, 364
subspace, 147, 327

has a basis, 332
surjective, 12, 369
Sylvester’s theorem, 370
symmetric, 86, 93
symmetric matrix, 249
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trace, 282
sum of eigenvalues, 282

triangle inequality, 30, 40, 47, 353
complex numbers, 17

union, 11
unitary, 262
upper Hessenberg form, 317

variation of constants formula, 350
variational inequality, 367
vector addition

geometric meaning, 26
vector space, 325

dimension, 330
vector space axioms, 24
vectors, 23, 32, 79

column vector, 79
row vector, 79

velocity, 35

work, 43
Wronskian, 116, 355
Wronskian alternative, 349

zero matrix, 78
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